首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen consumption for the oxidation of vanillin in a soil suspension and in structural chernozem samples was accelerated in glucose-treated variants. The effect was observed on adding glucose and vanillin simultaneously and after 16 hours' preincubation of the soil with glucose. Glucose degradation was accompanied by an increase in the proportion of bacteria capable of utilizing vanillin as the sole carbon source, as well as by a general increase in the number of microorganisms. With some of these bacterial strains, in a given pH range, glucose induced the ability to oxidize vanillic acid, or at least shortened the lag phase of oxygen consumption for oxidation of this intermediate product of vanillin decomposition. Glutamic, malic, succinic and pyruvic acid and glycine, ribose and fructose were found to have a similar effect to glucose on the oxidation of vanillin in washed bacterial cell suspensions and on the incidence of vanillin decomposers in soil.  相似文献   

2.
Decomposition of vanillin by soil microorganisms   总被引:3,自引:0,他引:3  
In chernozem soil, vanillin was decomposed via vanillic and protocatechuic acid before the aromatic ring opened. The rate curves of oxygen consumption for the oxidation of vanillin were seen to have more than one maximum. During incubation of the soil with vanillin, the number of bacteria increased, especially those capable of utilizing vanillin as the sole carbon source. Of the 21 such strains isolated, 15 were identified asPseudomonas sp., five asCellulomonas sp. and one asAchromobacter sp. It was found that the course of the oxidation of vanillin varied at different p.H values and in different strains was found that the course of the oxidation of vanillin varied at different p.H values and in different strains of bacteria. In some cases, the phase of the oxidation of vanillin to vanillic acid was clearly differentiated from the subsequent decomposition of vanillic acid.  相似文献   

3.
Decomposition of preparations of various fractions of fulvio acids in pure cultures of bacteria and in the soil was investigated. In the soils enriched with fulvic acids the amount of bacteria increased, oxygen consumption and formation of carbon dioxide followed a typical sigmoid curve. The above measurements indicated that mineralization occurred after a very short or negligible lag phase. During the decomposition of fulvic acids the ability of microorganisms to oxidize aromatic compounds,e.g. vanillio andphydroxybenzoic acid, increased. The presence of aromatic structures in the used preparations of fulvic acids was demonstrated on the basis of their IR spectra and according to the results of Chromatographic analyses of their hydrolysates. The results indicated a relationship between metabolism offulvio acids and aromatic oompounds. In samples of the soil preincubated with glucose the fulvic acids decomposed more rapidly than in untreated samples.  相似文献   

4.
Samples of chernozem and brown soils were irradiated with gamma rays using doses of 1.5 to 4.5 Mrad, or fractionally autoclaved at 1 and 2 kp/cm2. Consumption of oxygen by cellular suspensions of bacteria added to suspensions of sterilized soils was higher than in untreated samples. The increased oxygen consumption indicated an increase in the quantity of a biologically oxidizable substrate which could be released during the irradiation or autoclaving of soils. The amount of oxygen consumed was proportional to the radiation dose or autoclaving time and the pressure used, and was dependent also on the type of soil. The accessible substrate could be immediately, without a lag phase, oxidized by the added microorganism. The extent and rate of oxygen consumption in the sterilized soil samples varied in different microorganisms. It was observed that decomposition of vanillie acid by a cell suspension ofCellulomonas sp. was stimulated in the soil sterilized by radiation. The significance of these findings for the soil metabolic studies is discussed.  相似文献   

5.
Chernozem soil was preincubated with 0.1% glucose, glucose plus ammonium nitrate, hydrolyzed casein or amino acids for five days and with 1% wheat straw, pectin, peptone or cellulose for ten days. The soil was modified by this treatment so that the pipecolic acid was oxidized in two steps, as was shown by two peaks on the graphic plot of the oxygen uptake. In the control soil sample preincubated with water, the oxygen consumption curve formed one peak. In brown soil it was necessary to increase the concentration of glucose and hydrolyzed casein to 1% to obtain the oxidation of pipecolic acid in two phasos. Approximately a third of the oxygen for the complete oxidation of pipecolic acid was consumed in the first phase of oxidation, another third in the second phase of oxidation. A relation was found between the occurrence of the second period of oxidation of pipecolic acid and the amount of organic carbon in the soil.  相似文献   

6.
以黑龙江省大豆重茬 5年与正茬土壤和根系为主要研究对象 ,采用高效液相色谱法 ,研究土壤和根系浸提液中的酚酸物质的含量及其生物学效应 .结果表明 ,重茬土壤中对羟基苯甲酸和香草酸的含量 (1mol·L-1NaOH提取 )大于正茬土壤 ,且差异达到极显著水平 ,香草醛含量差异不显著 ;重茬大豆根系水提液中对羟基苯甲酸、香草酸、阿魏酸、香草醛、香豆素含量均高于正茬 .大豆连作条件下土壤多酚氧化酶活性高于正茬土壤 .重茬大豆根系水提液及在水培条件下外加对羟基苯甲酸对大豆幼苗生长发育有一定的抑制作用 ;酚酸物质加入土壤 1周后 ,对羟基苯甲酸、香草酸、香草醛、阿魏酸、苯甲酸、香豆素残留率分别为 10 .4%、15 .3 %、4.1%、2 .3 %、5 .0 %、17.5 % ;且外加酚酸浓度与土壤中真菌数量呈极显著指数相关 .  相似文献   

7.
Aerobic growth of the yeast Brettanomyces intermedius CBS 1943 in batch culture on a medium containing glucose and yeast extract proceeded via a characteristic pattern. In the first phase of growth glucose was fermented to nearly equal amounts of ethanol and acetic acid. After glucose depletion, growth continued while the ethanol produced in the first phase was almost quantitatively converted to acetic acid. Finally, after a long lag phase, growth resumed with concomitant consumption of acetic acid.When the culture was made anaerobic during the first phase, growth, glucose consumption and metabolite production stopped immediately. This Custers effect (inhibition of alcoholic fermentation as a result of anaerobic conditions) was transient. After 7–8 h the culture was adapted to anaerobiosis, and growth and ethanol production resumed. The lag phase could be shortened at will by the introduction of hydrogen acceptors, such as oxygen or acetoin, into the culture. Glycerol production was not observed during any phase of growth. These results support the hypothesis that the Custers effect in this yeast is due to a disturbance of the redox balance, resulting from the tendency of the organism to produce acetic acid, and its inability to restore the balance by production of glycerol.  相似文献   

8.
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.  相似文献   

9.
Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans‐4‐hydroxy‐3‐methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4‐hydroxy‐3‐methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid–liquid two‐phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel® G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3‐L working volume solid–liquid fed‐batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer–liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:207–214, 2014  相似文献   

10.
Streptomyces setonii strain 75Vi2 was grown at 45 degrees C in liquid media containing yeast extract and trans-cinnamic acid, p-coumaric acid, ferulic acid, or vanillin. Gas chromatography, thin-layer chromatography, and mass spectrometry showed that cinnamic acid was catabolized via benzaldehyde, benzoic acid, and catechol; p-coumaric acid was catabolized via p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and protocatechuic acid; ferulic acid was catabolized via vanillin, vanillic acid, and protocatechuic acid. When vanillin was used as the initial growth substrate, it was catabolized via vanillic acid, guaiacol, and catechol. The inducible ring-cleavage dioxygenases catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase were detected with an oxygen electrode in cell-free extracts of cultures grown in media with aromatic growth substrates and yeast extract.  相似文献   

11.
The metabolism of coumarin by a strain of Pseudomonas isolated from soil which utilizes coumarin as a sole carbon source was studied. The metabolic pathway was shown to be coumarin→dihydrocoumarin→melilotic acid→2,3-dihydroxyphenylpropionic acid, based on the results of (1) isolation and identification of metabolic products, (2) survey on the utilization of the postulated intermeidates and (3) examination of enzymatic reaction. An alternative pathway involving o-coumaric acid and 2,3-dihydroxycinnamic acid as intermediates at the metabolism of coumarin was also discussed.

Coumarin reducing enzyme (dihydrocoumarin : NAD[NADP] oxydo-reductase) which catalizes the reduction of coumarin to dihydrocoumarin was partially purified from the extracts of the above strain of Pseudomonas and some properties of the enzyme were investigated. The optimum pH of the reaction was 5.25. The enzyme is highly specific with respect to coumarin, and Km values for coumarin and NADH were 6.6 × 10?6 m and 4.1 × 10?5 m, respectively. The enzyme activity was extremely sensitive to sulfhydryl reagents particularly to p-chloromercuribenzoate. 2-Mercaptoethanol or dithiothreitol protected the enzyme from inactivation by low temperature storage. The molecular weight of enzyme was estimated to be about 140,000 by gel permiation Chromatographic method. The enzyme showed a substrate inhibition at higher concentrations of coumarin. This inhibition was noncompetitive with respect to NADH. The enzyme was also inhibited by many coumarin analogues. 3-Hydroxycoumarin showed noncompetitive inhibition with both coumarin and NADH. The mechanism of inhibition for the enzyme is discussed. It is concluded that enzyme protein contains zinc atom and that NADH is attached to zinc in the enzyme reaction.  相似文献   

12.
Oxidation of isoeugenol by Nocardia iowensis   总被引:1,自引:0,他引:1  
Isoeugenol is a starting material for both the synthetic and biotechnological production of vanillin and vanillic acid. Nocardia iowensis DSM 45197 (formerly Nocardia species NRRL 5646) resting cells catalyze the conversion of isoeugenol to vanillic acid, vanillin, vanillyl alcohol and guaiacol. The present study used a variety of chemical, microbial and enzymatic approaches to probe the pathways used by N. iowensis in the oxidation of isoeugenol to these products. Of three possible pathways considered, initial side-chain olefin epoxidation, epoxide hydrolysis to a vicinal diol, and diol cleavage to vanillin and subsequently further oxidation to vanillic acid appears as the most likely route. Isoeugenol was not oxidized to ferulic acid, a well-known microbial transformation precursor for vanillin and vanillic acid. 18O-Labeled oxygen (one atom) and water (two oxygen atoms) were incorporated into vanillic acid during the whole-cell biotransformation reaction with isoeugenol indicating the likely involvement of oxygenase and hydrolase systems in the bioconversion reaction. Vanillin was converted to singly labeled vanillic acid in the presence of H218O suggesting the presence of an aldehyde oxidase. Cell extracts achieved the conversion of isoeugenol to vanillic acid and vanillin without cofactors. Partial fractionation of two enzyme activities supported the presence of isoeugenol monooxygenase and vanillin oxidase activities in N. iowensis.  相似文献   

13.
Manometric studies were carried out on the respiratory activity of different rhizosphere and non-rhizosphere soils to follow quantitatively the over-all microbial activity in the rhizosphere soil as affected by the species and growth phase of plant. Oxygen consumption was distinctly greater in rhizosphere soils as compared to that in non-rhizosphere soils. The difference between oxygen consumption by rhizosphere and non-rhizosphere soils changed with the course of plant growth and it was not the same in different plants. This difference in oxygen consumption might be a measure of the amount of available oxidizable substrate in the rhizosphere. A rhizosphere sample had greater diversity as well as higher concentration of free amino acids than a non-rhizosphere sample of the same soil. Bacterial counts pointed to preferential stimulation in the rhizosphere of bacteria requiring individual amino acids. amino acids, such as glycine, alanine, asparsic acid of tyrosine were oxidized more rapidly in rhizosphere than in non-rhizosphere soil, but the extsent of oxidation for each of the amino acids studied did not differ. The amount of oxygen consumed during oxidation of alanine, aspartic acid or tyrosine was about one-half of the total amount necessary for complete oxidation. With glycine a higher extent of oxidation (60%) was observed. These extents of oxidation of glycine and aspartic acid did not change on investigation at two different phases of plant growth.  相似文献   

14.
Summary The mineralization of 14C-labelled naphthalene was studied in pristine and oil-contaminated soil slurry (30% solids) under denitrifying conditions using a range of concentrations from below to above the aqueous phase saturation level. Results from sorption-desorption experiments indicated that naphthalene desorption was highly irreversible and decreased with an increase in the soil organic content, thus influencing the availability for microbial consumption. Under denitrifying conditions, the mineralization of naphthalene to CO2 occurred in parallel with the consumption of nitrate and an increase in pH from 7.0 to 8.6. When the initial substrate concentration was 50 ppm (i.e. close to the aqueous phase saturation level), about 90% of the total naphthalene was mineralized within 50 days, and a maximum mineralization rate of 1.3 ppm day–1 was achieved after a lag period of approx. 18 days. When added at concentrations higher than the aqueous phase saturation level (200 and 500 ppm), similar mineralization rates (1.8 ppm day–1) occurred until about 50 ppm of the naphthalene was mineralized. After that the mineralization rates decreased logarithmically to a minimum of 0.24 ppm day–1 for the rest of the 160 days of the experiments. For both of these higher concentrations, the reaction kinetics were independent of the concentration, indicating that desorption of the substrate governs the mineralization rate. Other results indicated that pre-exposure of soil to oil contamination did not improve the degradation rates nor reduce the lag periods. This study clearly shows the potential of denitrifying conditions for the biodegradation of low molecular weight PAHs. Offprint requests to: R. Samson  相似文献   

15.
NADP-malic enzyme highly purified from sugarcane leaves exhibited hysteretic properties. This behavior resulted in a lag phase during activity measurement of the enzyme preincubated in the absence of substrates. The lag was inversely proportional to the protein concentration during preincubation, which suggests that changes in the aggregational state of the enzyme are responsible for hysteresis. The pH conditions as well as the presence of different compounds in the preincubation medium modified the hysteretic properties of the enzyme. Mg2+ eliminated the lag period and increased the enzyme activity by nearly 2-fold. NADP+, 3-phosphoglycerate, ATP and dithiothreitol shortened the lag phase. The substrate l-malate inhibited the enzyme by decreasing the steady state velocity and increasing the lag time in a concentration-dependent manner. NADPH, triose-phosphates and high ionic strength increased the lag phase. Results are consistent with the view that the level of different metabolites and the pH conditions at the chloroplast regulate the activity of NADP-malic enzyme in a coordinate and effective manner.Abbreviations Diamide azodicarboxylic acid bis(dimethylamide) - DHAP dihydroxyacetone-phosphate - DTT dithiothreitol - Ga3P glyceraldehyde-3-phosphate - NADP-ME NADP-dependent malic enzyme - PEP phosphoenolpyruvate - 3PGA 3-phosphoglycerate  相似文献   

16.
Zhao LQ  Sun ZH  Zheng P  Zhu LL 《Biotechnology letters》2005,27(19):1505-1509
A novel strain of Bacillus fusiformis, producing high amounts of vanillin from isoeugenol, was isolated from soil. Using 60% (v/v) isoeugenol as substrate and solvent and at pH 4.0, 37 °C and 180 rpm, vanillin was produced at 32.5 g l−1 over 72 h. The unused isoeugenol was reusable.  相似文献   

17.
A bacterium designated as HS8 was newly isolated from soil based on its ability to degrade isoeugenol. The strain was identified as Bacillus subtilis according to its 16S rDNA sequence analysis and biochemical characteristics. The metabolic pathway for the degradation of isoeugenol was examined. Isoeugenol-diol, for the first time, was detected as an intermediate from isoeugenol to vanillin by a bacterial strain. Isoeugenol was converted to vanillin via isoeugenol-diol, and vanillin was then metabolized via vanillic acid to guaiacol by strain HS8. These metabolites, vanillin, vanillic acid, and guaiacol, are all valuable aromatic compounds in flavor production. At the same time, the bipolymerization of isoeugenol was observed, which produced dehydrodiisoeugenol and decreased the vanillin yield. High level of vanillic acid decarboxylase activity was detected in cell-free extract. These findings provided a detailed profile of isoeugenol metabolism by a B. subtilis strain for the first time, which would improve the production of valuable aromatic compounds by biotechnology.  相似文献   

18.
The elicitor-induced incorporation of phenylpropanoid derivatives into the cell wall and the secretion of soluble coumarin derivatives (phytoalexins) by parsley (Petroselinum crispum L.) suspension cultures can be potentiated by pretreatment of the cultures with 2,6-dichloroisonicotinic acid or derivatives of salicylic acid. To investigate this phenomenon further, the cell walls and an extracellular soluble polymer were isolated from control cells or cells treated with an elicitor from Phytophthora megasperma f. sp. glycinea. After alkaline hydrolysis, both fractions from elicited cells showed a greatly increased content of 4-coumaric, ferulic, and 4-hydroxybenzoic acid, as well as 4-hydroxybenzaldehyde and vanillin. Two minor peaks were identified as tyrosol and methoxytyrosol. The pretreatment effect is most pronounced at a low elicitor concentration. Its specificity was elaborated for coumarin secretion. When the parsley suspension cultures were preincubated for 1 d with 2,6-dichloroisonicotinic, 4- or 5-chlorosalicylic, or 3,5- dichlorosalicylic acid, the cells exhibited a greatly increased elicitor response. Pretreatment with isonicotinic, salicylic, acetylsalicylic, or 2,6-dihydroxybenzoic acid was less efficient in enhancing the response, and some other isomers were inactive. This increase in elicitor response was also observed for the above-mentioned monomeric phenolics, which were liberated from cell walls upon alkaline hydrolysis and for "lignin-like" cell wall polymers determined by the thioglycolic acid method. It was shown for 5-chlorosalicylic acid that conditioning most likely improves the signal transduction leading to the activation of genes encoding phenylalanine ammonia lyase and 4-coumarate: coenzyme A ligase. The conditioning thus sensitizes the parsley suspension cells to respond to lower elicitor concentrations. If a similar mechanism were to apply to whole plants treated with 2,6-dichloroisonicotinic acid, a known inducer of systemic acquired resistance, one can hypothesize that fungal pathogens might be recognized more readily and effectively.  相似文献   

19.
12-Lipoxygenase (12-LO) in bullfrog (Rana catesbeiana) erythrocytes was purified partially by ion exchange chromatography and affinity chromatography. Bullfrog 12-LO was a single chain protein with a pI of 7.1–7.8 and MW of 7.77 kDa. This enzyme did not show typical Michaelis–Menten type kinetics. At low substrate concentrations, it had a lag phase and at higher substrate concentrations, the activity was inhibited. The product of linoleic acid (LA), 13-hydroperoxy-9, 11-octadecadienoic acid (13-HpODE), was an activator for the enzyme. When arachidonic acid (AA) was used as substrate, 13-HpODE also affected the Km of bullfrog 12-LO towards AA. The affinity of LA towards bullfrog 12-LO was higher than the affinity of AA. Suicide inactivation was much more rapid than that of any mammalian 12-LO reported. Hemoglobin (Hb) inhibited the activity of 12-LO partially and removing Hb eliminated this inhibition. Both Hb and Met-Hb inhibited the 12-LO activity but did not denatured completely the Hb, suggesting that the inhibition was a direct interaction between 12-LO and Hb protein chain and was not due to competition between 12-LO and Hb for oxygen. This study characterizes bullfrog 12-LO with respect to stability, optimal pH, suicide inactivation and interaction with Hb and provides important evolutionary information about this enzyme.  相似文献   

20.
Conditions in which 1-aminocyclopropane-1-carboxylic acid (ACC) functions as a substrate of peroxidase have been investigated by measuring oxygen consumption in the reaction medium and the production of ethylene. In both cases, the presence of Mn2+ and either H2O2 or the activated form of peroxidase, namely compound I of peroxidase, was found to be essential. Both oxygen consumption and ethylene production were dependent on enzyme concentration, the optimum ACC/Mn2+ ratio being 1:1. Oxygen consumption in a system with ACC, Mn2+ and compound I showed an enzyme-dependent lag phase and then proceeded to total depletion, suggesting that the system itself generates hydroperoxides that completed the catalytic cycle of the enzyme. The presence of these hydroperoxides in the reaction medium was detected by a colorimetric method. High H2O2 concentration progressively decreased oxygen consumption, the same effect being produced by catalase. Ethylene production was oxygen dependent, mediated by ACC-free radicals and gave a poor yield. The results suggest that the fate of these ACC-free radicals determines the yield in ethylene. These radicals must be oxidized immediately, otherwise their stabilization to hydroperoxides would prevent ethylene production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号