首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomosyn Inhibits Synaptic Vesicle Priming in Caenorhabditis elegans   总被引:1,自引:1,他引:0  
Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.  相似文献   

2.
We have previously shown that the AEX-1 protein, which is expressed in postsynaptic muscles, retrogradely regulates presynaptic neural activity at the Caenorhabditis elegans neuromuscular junctions. AEX-1 is similar to vertebrate Munc13-4 protein, suggesting a function for vesicle exocytosis from a kind of cells. Compared to emerging evidences of the role of Munc13 proteins in synaptic vesicle release, however, the precise mechanism for vesicle exocytosis by AEX-1 and Munc13-4 is little understood. Here we have identified SYN-1 as a candidate molecule of AEX-1-dependent vesicle exocytosis from non-neuronal cells. The syn-1 gene encodes a C. elegans syntaxin, which is distantly related to the neuronal syntaxin UNC-64. The syn-1 gene is predominantly expressed in non-neuronal tissues and genetically interacts with aex-1 for presynaptic activity. However, the two proteins did not interact physically in our yeast two-hybrid system and mutational SYN-1 did not bypass the requirement of AEX-1 for the behavioral defects in aex-1 mutants, whereas mutant UNC-64 does in unc-13 mutants. These results suggest that a novel molecular interaction between the AEX-1 and syntaxin may regulate vesicle exocytosis for retrograde signal release.  相似文献   

3.
Open syntaxin docks synaptic vesicles   总被引:3,自引:0,他引:3       下载免费PDF全文
Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking.  相似文献   

4.
Voltage-gated cation channels regulate neuronal excitability through selective ion flux. NALCN, a member of a protein family that is structurally related to the α1 subunits of voltage-gated sodium/calcium channels, was recently shown to regulate the resting membrane potentials by mediating sodium leak and the firing of mouse neurons. We identified a role for the Caenorhabditis elegans NALCN homologues NCA-1 and NCA-2 in the propagation of neuronal activity from cell bodies to synapses. Loss of NCA activities leads to reduced synaptic transmission at neuromuscular junctions and frequent halting in locomotion. In vivo calcium imaging experiments further indicate that while calcium influx in the cell bodies of egg-laying motorneurons is unaffected by altered NCA activity, synaptic calcium transients are significantly reduced in nca loss-of-function mutants and increased in nca gain-of-function mutants. NCA-1 localizes along axons and is enriched at nonsynaptic regions. Its localization and function depend on UNC-79, and UNC-80, a novel conserved protein that is also enriched at nonsynaptic regions. We propose that NCA-1 and UNC-80 regulate neuronal activity at least in part by transmitting depolarization signals to synapses in C. elegans neurons.  相似文献   

5.
Rim是囊泡分泌活性区中的重要组成蛋白,它与细胞分泌和突触可塑性相关.在秀丽隐感线虫中只存在一种编码Rim的基因即unc-10.我们的研究发现,在线虫中Rim的基因突变unc-10(md1117)会导致致密核心囊泡的分泌缺陷.在活体中,unc-10突变虫系的神经多肽分泌显著下降.此外,在主要分泌致密核心囊泡的ALA神经元内,钙光解释放促发的快相分泌也比野生型减少.运用全内反射荧光显微成像技术,我们观察在unc-10缺失的情况下ALA 神经元中致密核心囊泡的锚定过程,结果显示在细胞膜附近停留的囊泡数目减少,表明囊泡锚定受到阻碍.上述试验结果表明,UNC-10能够影响致密核心囊泡的分泌过程,其机制可能是影响了囊泡的锚定过程.  相似文献   

6.
The unc-11 gene of Caenorhabditis elegans encodes multiple isoforms of a protein homologous to the mammalian brain-specific clathrin-adaptor protein AP180. The UNC-11 protein is expressed at high levels in the nervous system and at lower levels in other tissues. In neurons, UNC-11 is enriched at presynaptic terminals but is also present in cell bodies. unc-11 mutants are defective in two aspects of synaptic vesicle biogenesis. First, the SNARE protein synaptobrevin is mislocalized, no longer being exclusively localized to synaptic vesicles. The reduction of synaptobrevin at synaptic vesicles is the probable cause of the reduced neurotransmitter release observed in these mutants. Second, unc-11 mutants accumulate large vesicles at synapses. We propose that the UNC-11 protein mediates two functions during synaptic vesicle biogenesis: it recruits synaptobrevin to synaptic vesicle membranes and it regulates the size of the budded vesicle during clathrin coat assembly.  相似文献   

7.
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca2+) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.  相似文献   

8.
Synapses are composed of a presynaptic active zone in the signaling cell and a postsynaptic terminal in the target cell. In the case of chemical synapses, messages are carried by neurotransmitters released from presynaptic terminals and received by receptors on postsynaptic cells. Our previous research in Caenorhabditis elegans has shown that VSM-1 negatively regulates exocytosis. Additionally, analysis of synapses in vsm-1 mutants showed that animals lacking a fully functional VSM-1 have increased synaptic connectivity. Based on these preliminary findings, we hypothesized that C. elegans VSM-1 may play a crucial role in synaptogenesis. To test this hypothesis, double-labeled microarray analysis was performed, and gene expression profiles were determined. First, total RNA was isolated, reversely transcribed to cDNA, and hybridized to the DNA microarrays. Then, in-silico analysis of fluorescent probe hybridization revealed significant induction of many genes coding for members of the major sperm protein family (MSP) in mutants with enhanced synaptogenesis. MSPs are the major component of sperm in C. elegans and appear to signal nematode oocyte maturation and ovulation . In fruit flies, Chai and colleagues 1 demonstrated that MSP-like molecules regulate presynaptic bouton number and size at the neuromuscular junction. Moreover, analysis performed by Tsuda and coworkers 2 suggested that MSPs may act as ligands for Eph receptors and trigger receptor tyrosine kinase signaling cascades. Lastly, real time PCR analysis corroborated that the gene coding for MSP-32 is induced in vsm-1(ok1468) mutants. Taken together, research performed by our laboratory has shown that vsm-1 mutants have a significant increase in synaptic density, which could be mediated by MSP-32 signaling.  相似文献   

9.
Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.  相似文献   

10.
Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13   总被引:9,自引:0,他引:9  
McEwen JM  Madison JM  Dybbs M  Kaplan JM 《Neuron》2006,51(3):303-315
Priming of synaptic vesicles (SVs) is essential for synaptic transmission. UNC-13 proteins are required for priming. Current models propose that UNC-13 stabilizes the open conformation of Syntaxin, in which the SNARE helix is available for interactions with Synaptobrevin and SNAP-25. Here we show that Tomosyn inhibits SV priming. Tomosyn contains a SNARE motif, which forms an inhibitory SNARE complex with Syntaxin and SNAP-25. Mutants lacking Tomosyn have increased synaptic transmission, an increased pool of primed vesicles, and increased abundance of UNC-13 at synapses. Behavioral, imaging, and electrophysiological studies suggest that SV priming was reconstituted in unc-13 mutants by expressing a constitutively open mutant Syntaxin, or by mutations eliminating Tomosyn. Thus, priming is modulated by the balance between Tomosyn and UNC-13, perhaps by regulating the availability of open-Syntaxin. Even when priming was restored, synaptic transmission remained defective in unc-13 mutants, suggesting that UNC-13 is also required for other aspects of secretion.  相似文献   

11.
Actin plays important roles in a number of synaptic processes, including synaptic vesicle organization and exocytosis, mobility of postsynaptic receptors, and synaptic plasticity. However, little is known about the mechanisms that control actin at synapses. Actin dynamics crucially depend on LIM kinase 1 (LIMK1) that controls the activity of the actin depolymerizing proteins of the ADF/cofilin family. While analyses of mouse mutants revealed the importance of LIMK1 for both pre- and postsynaptic mechanisms, the ADF/cofilin family member n-cofilin appears to be relevant merely for postsynaptic plasticity, and not for presynaptic physiology. By means of immunogold electron microscopy and immunocytochemistry, we here demonstrate the presence of ADF (actin depolymerizing factor), a close homolog of n-cofilin, in excitatory synapses, where it is particularly enriched in presynaptic terminals. Surprisingly, genetic ablation of ADF in mice had no adverse effects on synapse structure or density as assessed by electron microscopy and by the morphological analysis of Golgi-stained hippocampal pyramidal cells. Moreover, a series of electrophysiological recordings in acute hippocampal slices revealed that presynaptic recruitment and exocytosis of synaptic vesicles as well as postsynaptic plasticity were unchanged in ADF mutant mice. The lack of synaptic defects may be explained by the elevated n-cofilin levels observed in synaptic structures of ADF mutants. Indeed, synaptic actin regulation was impaired in compound mutants lacking both ADF and n-cofilin, but not in ADF single mutants. From our results we conclude that n-cofilin can compensate for the loss of ADF in excitatory synapses. Further, our data suggest that ADF and n-cofilin cooperate in controlling synaptic actin content.  相似文献   

12.
Neurosecretion is critically dependent on the assembly of a macromolecular complex between the SNARE proteins syntaxin, SNAP-25 and synaptobrevin. Evidence indicates that the binding of tomosyn to syntaxin and SNAP-25 interferes with this assembly, thereby negatively regulating both synaptic transmission and peptide release. Tomosyn has two conserved domains: an N-terminal encompassing multiple WD40 repeats predicted to form two β-propeller structures and a C-terminal SNARE-binding motif. To assess the function of each domain, we performed an in vivo analysis of the N- and C- terminal domains of C. elegans tomosyn (TOM-1) in a tom-1 mutant background. We verified that both truncated TOM-1 constructs were transcribed at levels comparable to rescuing full-length TOM-1, were of the predicted size, and localized to synapses. Unlike full-length TOM-1, expression of the N- or C-terminal domains alone was unable to restore inhibitory control of synaptic transmission in tom-1 mutants. Similarly, co-expression of both domains failed to restore TOM-1 function. In addition, neither the N- nor C-terminal domain inhibited release when expressed in a wild-type background. Based on these results, we conclude that the ability of tomosyn to regulate neurotransmitter release in vivo depends on the physical integrity of the protein, indicating that both N- and C-terminal domains are necessary but not sufficient for effective inhibition of release in vivo.  相似文献   

13.
Spontaneous Unstable UNC-22 IV Mutations in C. ELEGANS Var. Bergerac   总被引:21,自引:2,他引:19  
This paper describes a mutator system in the nematode Caenorhabditis elegans var. Bergerac for the gene unc-22. Of nine C. elegans and two C. briggsae strains tested only the Bergerac BO strain yielded mutant animals at a high frequency and the unc-22 IV gene is a preferred mutational target. The forward spontaneous mutation frequency at the unc-22 locus in Bergerac BO is about 1 x 10-4 , and most of these spontaneous unc-22 mutations revert at frequencies between 2 x 10-3 and 2 x 10 -4. Both the forward mutation frequency and the reversion frequency are sensitive to genetic background. Spontaneous unc-22 mutations derived in a Bergerac background and placed in a primarily Bristol background revert at frequencies of <10-6. When reintroduced into a Bergerac/Bristol hybrid background the mutations once again become unstable.

The mutator activity could not be localized to a discrete site in the Bergerac genome. Nor did mutator activity require the Bergerac unc-22 gene as a target since the Bristol unc-22 homolog placed in a Bergerac background also showed high mutation frequency. Intragenic mapping of two spontaneous unc-22 alleles, st136 and st137, place both mutations in the central region of the known unc-22 map. However, these mutations probably recombine with one another, suggesting that the unstable mutations can occur in more than one site in unc-22. Examination of the phenotypic effect of these mutations on muscle structure indicates that they are less severe in their effect than a known amber allele. We suggest that this mutator system is polygenic and dispersed over the nematode genome and could represent activity of the transposable element Tc1.

  相似文献   

14.
The lipid polyunsaturated fatty acids are highly enriched in synaptic membranes, including synaptic vesicles, but their precise function there is unknown. Caenorhabditis elegans fat-3 mutants lack long-chain polyunsaturated fatty acids (LC-PUFAs); they release abnormally low levels of serotonin and acetylcholine and are depleted of synaptic vesicles, but the mechanistic basis of these defects is unclear. Here we demonstrate that synaptic vesicle endocytosis is impaired in the mutants: the synaptic vesicle protein synaptobrevin is not efficiently retrieved after synaptic vesicles fuse with the presynaptic membrane, and the presynaptic terminals contain abnormally large endosomal-like compartments and synaptic vesicles. Moreover, the mutants have abnormally low levels of the phosphoinositide phosphatase synaptojanin at release sites and accumulate the main synaptojanin substrate phosphatidylinositol 4,5-bisphosphate at these sites. Both synaptobrevin and synaptojanin mislocalization can be rescued by providing exogenous arachidonic acid, an LC-PUFA, suggesting that the endocytosis defect is caused by LC-PUFA depletion. By showing that the genes fat-3 and synaptojanin act in the same endocytic pathway at synapses, our findings suggest that LC-PUFAs are required for efficient synaptic vesicle recycling, probably by modulating synaptojanin localization at synapses.  相似文献   

15.
Moerman DG  Baillie DL 《Genetics》1979,91(1):95-103
Fine-structure analysis of the unc-22 gene of Caenorhabditis elegans has revealed a number of sites that are separable by recombination. Eight new ethyl methanesulfonate-induced recessive mutations of the unc-22 gene have been isolated. Using these new alleles, as well as e66, a number of separable sites have been identified and positioned relative to one another. The map distances obtained are found to be comparable to those associated with intragenic recombination in Drosophila melanogaster, indicating that genetic fine-structure analysis is feasible in Caenorhabditis elegans. Evidence of possible gene conversion is presented. A preliminary estimate of the unc-22 gene size is 2.4 x 10-2 map units.  相似文献   

16.
Evoked synaptic transmission is dependent on interactions between the calcium sensor Synaptotagmin I and the SNARE complex, comprised of Syntaxin, SNAP-25, and Synaptobrevin. Recent evidence suggests that Snapin may be an important intermediate in this process, through simultaneous interactions of Snapin dimers with SNAP-25 and Synaptotagmin. In support of this model, cultured neurons derived from embryonically lethal Snapin null mutant mice exhibit desynchronized release and a reduced readily releasable vesicle pool. Based on evidence that a dimerization-defective Snapin mutation specifically disrupts priming, Snapin is hypothesized to stabilize primed vesicles by structurally coupling Synaptotagmin and SNAP-25. To explore this model in vivo we examined synaptic transmission in viable, adult C. elegans Snapin (snpn-1) mutants. The kinetics of synaptic transmission were unaffected at snpn-1 mutant neuromuscular junctions (NMJs), but the number of docked, fusion competent vesicles was significantly reduced. However, analyses of snt-1 and snt-1;snpn-1 double mutants suggest that the docking role of SNPN-1 is independent of Synaptotagmin. Based on these results we propose that the primary role of Snapin in C. elegans is to promote vesicle priming, consistent with the stabilization of SNARE complex formation through established interactions with SNAP-25 upstream of the actions of Synaptotagmin in calcium-sensing and endocytosis.  相似文献   

17.
UNC-13 interaction with syntaxin is required for synaptic transmission   总被引:11,自引:0,他引:11  
Neurotransmitter secretion at synapses is controlled by several processes-morphological docking of vesicles at release sites, priming of docked vesicles to make them fusion competent, and calcium-dependent fusion of vesicles with the plasma membrane . In worms, flies, and mice, mutants lacking UNC-13 have defects in vesicle priming . Current models propose that UNC-13 primes vesicles by stabilizing Syntaxin's "open" conformation by directly interacting with its amino-terminal regulatory domain . However, the functional significance of the UNC-13/Syntaxin interaction has not been tested directly. A truncated protein containing the Munc homology domains (MHD1 and MHD2) and the carboxy-terminal C2 domain partially rescued both the behavioral and secretion defects of unc-13 mutants in C. elegans. A double mutation in MHD2 (F1000A/K1002A) disrupts the UNC-13/Syntaxin interaction. The rate of endogenous synaptic events and the amplitude of nerve-evoked excitatory post-synaptic currents (EPSCs) were both significantly reduced in UNC-13S(F1000A/K1002A). However, the pool of primed (i.e., fusion-competent) vesicles was normal. These results suggest that the UNC-13/Syntaxin interaction is conserved in C. elegans and that, contrary to current models, the UNC-13/Syntaxin interaction is required for nerve-evoked vesicle fusion rather than synaptic-vesicle priming. Thus, UNC-13 may regulate multiple steps of the synaptic-vesicle cycle.  相似文献   

18.
Calcium-activated protein for secretion (CAPS) is proposed to play an essential role in Ca2+-regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Here we report the cloning, mutation, and characterization of the Drosophila ortholog (dCAPS). Null dCAPS mutants display locomotory deficits and complete embryonic lethality. The mutant NMJ reveals a 50% loss in evoked glutamatergic transmission, and an accumulation of synaptic vesicles at active zones. Importantly, dCAPS mutants display a highly specific 3-fold accumulation of dense-core vesicles in synaptic terminals, which was not observed in mutants that completely arrest synaptic vesicle exocytosis. Targeted transgenic CAPS expression in identified motoneurons fails to rescue dCAPS neurotransmission defects, demonstrating a cell nonautonomous role in synaptic vesicle fusion. We conclude that dCAPS is required for dense-core vesicle release and that a dCAPS-dependent mechanism modulates synaptic vesicle release at glutamatergic synapses.  相似文献   

19.
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons.  相似文献   

20.
Previously we reported that CFL-1, the single LRR-type F-box protein in the Caenorhabditis elegans genome, affected defecation behavior and daumone response. CFL-1 is highly homologous to the FBXL20 in mammals, which regulates synaptic vesicle release by targeting its substrate Rim1 for ubiquitin-mediated degradation. The worm homolog of Rim1 is UNC-10, a presynaptic membrane protein that triggers synaptic vesicle fusion through interaction with RAB-3 GTPase. To examine if CFL-1 exerts its modulatory effect on the defecation and daumone response via ubiquitination of UNC-10, we performed RNAi knock-down of CFL-1 in the unc-10(e102) mutant background. We noticed additive increase in defecation interval when the activities of both CFL-1 and UNC-10 were compromised. Also, the degree of dauer formation upon daumone treatment in unc-10 mutants treated with CFL-1 RNAi decreased further than the level observed in untreated mutants or wild type N2 worms with CFL-1 RNAi knock-down. Our data suggest that CFL-1 affects defecation frequency and daumone response in C. elegans through the ubiquitination of UNC-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号