首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

2.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

3.
不同温度条件下小鼠囊胚OPS法玻璃化冷冻保存技术的研究   总被引:1,自引:0,他引:1  
本实验采用OPS法在不同温度条件下对小鼠囊胚实施冷冻保存,研究用EDFS和EFS溶液冷冻保存囊胚的效率和提供不同温度下筛选玻璃化溶液的依据,为家畜和人类胚胎的冷冻保存建立模型。25℃室温和37℃恒温台条件下OPS一步法冷冻保存小鼠囊胚,EFS40和EDFS40冷冻组扩张囊胚率(92.31%,92.30%)与对照(97.26%)均无显著差异(P>0.05),但EDFS40孵化囊胚率(59.62%)显著低于对照组(83.56%)(P<0.05);二步法冷冻结果显示,采用EDFS30和EFS40均能高效保存小鼠囊胚,解冻后扩张囊胚率(95.69%和95.05%)和孵化率(80.48%和78.95%)与对照无显著差异(P>0.05)。当改为25℃室温不使用恒温台条件下,一步法冷冻的胚胎解冻后,仅EDFS40冷冻组扩张囊胚率和孵化囊胚率(85.96%和75.44%)与对照(96.05%和82.89%)无显著性差异(P>0.05);实施二步法冷冻的胚胎,解冻后EDFS30,EDFS40和EFS40组均获得理想效果,扩张囊胚率(92.03%-95.31%)及孵化囊胚率(67.19%-76.76%)与对照均无显著差异(96.05%和82.89%)(P>0.05)。据体外发育结果,选择最佳冷冻组胚胎移植给假孕4d的受体母鼠,其妊娠率和产仔率(90.90%和37.33%)与新鲜胚对照组(91.67%和42.33%)无显著差异(P>0.05)。结果证实,EDFS30、EDFS40和EFS40三种冷冻液在不同的温度条件和采用不同冷冻程序,均能成功保存小鼠囊胚。  相似文献   

4.
The recently introduced Open Pulled Straw (OPS) vitrification technique has successfully been used for cryopreserving porcine embryos as well as for bovine embryos and oocytes. The aim of this work is to investigate several factors on the in vitro survival of bovine blastocysts. In 5 experiments, a total of 862 in vitro produced blastocysts and expanded blastocysts was vitrified and warmed using the OPS technology, then cultured in vitro for an additional 3 days. The culture medium in Experiments 1 to 4 was SOFaa with supplements and 5% calf serum (CS). In Experiment 1, the replacement of TCM-199 + 20% CS with PBS + 20% CS in the holding medium during vitrification and warming did not result in significant differences in the re-expansion (92 vs 95%) and hatching rates (79 vs 72%). In Experiment 2, the PBS holding medium was supplemented with either 20% CS, 5 mg/mL bovine serum albumin (BSA) or 3 mg/mL polyvinylalcohol (PVA). Although the re-expansion rates did not differ (98, 95 and 93%, respectively), there was a decrease in the hatching rate after vitrification with PVA (77 and 78 vs 51%, respectively). In Experiment 3, the influence of temperature of equilibration media prior to and rehydration media after the vitrification was investigated. When the temperature of these media was adjusted to 20 degrees C instead of the standard 35 degrees C, both the re-expansion and the hatching rates decreased markedly. However, increasing the time of equilibration with the diluted cryoprotectant solution at 20 degrees C eliminated these differences. In Experiment 4, the ethylene-glycol and dimethyl sulfoxide cryoprotectant mixture was replaced with ethylene glycol-ficoll-trehalose solution. No difference in the re-expansion (89 vs 96%, respectively) or hatching rate (79 vs 84%, respectively) was detected. In Experiment 5, the vitrified-warmed blastocysts were cultured in SOFaa medium supplemented with 5% CS or 5 mg/mL BSA. Although the re-expansion rates were identical in the 2 groups (95%), the hatching rates were lower when embryos were cultured in BSA (71 and 47%, respectively). These findings indicated the possible broader application for OPS, as they demonstrated that the physical advantages of rapid cooling and warming may be accompanied by different chemical composition (holding media, cryoprotective additives) according to the requirements of the biological structure. Our study also shows the need for serum supplementation of the medium for hatching to occur after OPS vitrification.  相似文献   

5.
Little is known on the cryopreservation of mouse pronuclear (PN) stage embryos. In the present experiment the mouse 2-PN stage embryos were cryopreserved by conventional freezing, straw, or open-pulled straw (OPS) vitrificaiton methods. The conventional freezing solution was 1.5 mol/L ethylene glycol (EG), and vitrification solutions were EFS30 (30% EG, Ficoll, and sucrose), EFS40 (40% EG, Ficoll, and sucrose), EDFS30 (15% EG, 15%dimethyl sulfoxide [DMSO], Ficoll, and sucrose), or EDFS40 (20% EG, 20%DMSO, Ficoll, and sucrose). The blastocyst rate of 2-PN stage embryos cryopreserved by conventional method (30.4%) was lower than those vitrified by straw method with EDFS (56.9% to 69.1%), by OPS method (66.0% to 85.7%), and that of control (80.8%) (P < 0.05). With a given vitrificaiton solution EFS30, EFS40, EDFS30, or EDFS40, the blastocyst rate of embryos vitrified by the OPS method (66.7%, 66.0%, 85.7%, or 76.9%) was higher than that of those vitrified by the straw method (46.8%, 43.8%, 69.1%, or 56.9%) (P < 0.05). When mouse 2-PN-stage embryos were vitrified with EDFS30 by straw or OPS method, the highest blastocyst rate was achieved (69.1% or 85.7%) and was similar to that of the control, respectively. The embryos transfer results revealed that the full-term development of blastocysts derived from 2-PN stage embryos vitrified by OPS method with EDFS30 (19.9%) was similar to that of the control (23.5%), and higher than that of those cryopreserved by conventional freezing (9.3%) (P < 0.05). The present research demonstrates that the OPS method, especially with EDFS30, is more effective in cryopreserving mouse 2-PN embryos.  相似文献   

6.
This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.  相似文献   

7.
Little is known on the cryopreservation of mouse pronuclear (PN) stage embryos. In the present experiment the mouse 2-PN stage embryos were cryopreserved by conventional freezing, straw, or open-pulled straw (OPS) vitrificaiton methods. The conventional freezing solution was 1.5 mol/L ethylene glycol (EG), and vitrification solutions were EFS30 (30% EG, Ficoll, and sucrose), EFS40 (40% EG, Ficoll, and sucrose), EDFS30 (15% EG, 15%dimethyl sulfoxide [DMSO], Ficoll, and sucrose), or EDFS40 (20% EG, 20%DMSO, Ficoll, and sucrose). The blastocyst rate of 2-PN stage embryos cryopreserved by conventional method (30.4%) was lower than those vitrified by straw method with EDFS (56.9% to 69.1%), by OPS method (66.0% to 85.7%), and that of control (80.8%) (P < 0.05). With a given vitrificaiton solution EFS30, EFS40, EDFS30, or EDFS40, the blastocyst rate of embryos vitrified by the OPS method (66.7%, 66.0%, 85.7%, or 76.9%) was higher than that of those vitrified by the straw method (46.8%, 43.8%, 69.1%, or 56.9%) (P < 0.05). When mouse 2-PN-stage embryos were vitrified with EDFS30 by straw or OPS method, the highest blastocyst rate was achieved (69.1% or 85.7%) and was similar to that of the control, respectively. The embryos transfer results revealed that the full-term development of blastocysts derived from 2-PN stage embryos vitrified by OPS method with EDFS30 (19.9%) was similar to that of the control (23.5%), and higher than that of those cryopreserved by conventional freezing (9.3%) (P < 0.05). The present research demonstrates that the OPS method, especially with EDFS30, is more effective in cryopreserving mouse 2-PN embryos.  相似文献   

8.
A.N. Al Yacoub 《Theriogenology》2010,73(8):1018-1023
This investigation addresses the question whether it is possible to apply the open pulled straw (OPS) vitrification method, found to be effective for cryopreserving caprine (Capra aegagrus hircus) blastocysts, to other embryonal stages. Morulae, blastocysts and hatched blastocysts were cryopreserved by way of OPS vitrification and blastocysts and hatched blastocysts by conventional freezing. Morulae were not included with conventional freezing because in our experience the survival rate is very low. To assess the viability of the cryopreserved embryos, they were transferred to synchronized does; in most cases, two embryos per doe. After OPS vitrification, of nine does receiving morulae, not a single one became pregnant; of 11 does receiving blastocysts, nine (82%) became pregnant (all of which kidded and gave birth to, on average, 1.8 kids); and of nine does receiving hatched blastocysts, three (33%) became pregnant (two of which [22%] kidded, giving birth to a single kid each). After conventional freezing, of 10 does receiving blastocysts, five became pregnant (four of which [40%] carried to term and gave birth to a pair of twins each); and of nine does receiving hatched blastocysts, three (33%) became pregnant (and gave birth to a single kid each). Embryo survival (kids born/embryos transferred) after vitrification for morulae, blastocysts, and hatched blastocysts was 0, 70% (16 of 23), and 13% (2 of 16), respectively, and after conventional freezing for blastocysts and hatched blastocysts was 42% (8 of 19) and 19% (3 of 16), respectively. The difference in pregnancy and kidding rate between vitrified and conventionally frozen blastocysts was significant, and so was the difference in pregnancy rate between hatched and nonhatched blastocysts, regardless whether OPS-vitrified or conventionally frozen. The results of the current study indicate that OPS vitrification is a very effective means of cryopreserving caprine blastocysts. Unfortunately, the superiority of OPS vitrification over conventional freezing does not apply to caprine morulae and hatched blastocysts.  相似文献   

9.
The study was designed to evaluate the efficiency of a modified (sealed) open pulled straw (mOPS) method for cryopreserving rabbit embryos by vitrification or rapid freezing. An additional objective was to determine whether the mOPS method could cause the vitrification of a cryoprotectant solution generally used in rapid freezing procedures. Two consecutive experiments of in vitro and in vivo viability were performed. In Experiment 1, the in vitro viability of rabbit embryos at the morula, compacted morula, early blastocyst and blastocyst stages was assessed after exposure to a mixture of 25% glycerol and 25% ethylene glycol (25GLY:25EG: vitrification solution) or 4.5 M (approximately 25% EG) ethylene glycol and 0.25 M sucrose (25EG:SUC: rapid freezing solution). Embryos were loaded into standard straws or mOPS and plunged directly into liquid nitrogen. The mOPS consisted of standard straws that were heat-pulled, leaving a wide opening for the cotton plug and a narrow one for loading embryos by capillarity. The embryos were aspirated into the mOPS in a column positioned between two columns of cryoprotectant solution separated by air bubbles. The mOPS were then sealed with polyvinyl-alcohol (PVA) sealing powder. The vitrification 25GLY:25EG solution became vitrified both in standard straws and mOPS, whereas the rapid freezing 25EG:SUC solution crystallized in standard straws, but vitrified in mOPS. The total number of embryos cryopreserved was 1695. Embryos cryopreserved after exposure to each solution in mOPS showed higher rates (88.2%) of survival immediately after thawing and removal of the cryoprotectant than those cryopreserved in 0.25 ml standard straws (78.8%; P < 0.0001). After culture, the developmental stage of the cryopreserved embryos significantly affected the rates of development to the expanded blastocyst stage. Regardless of the cryoprotectant used, lower rates of in vitro development were obtained when the embryos were cryopreserved at the morula stage, and higher rates achieved using embryos at blastocyst stages. Based on the results of Experiment 1, the second experiment was performed on blastocysts using the mOPS method. Experiment 2 was designed to evaluate the in vivo viability of cryopreserved rabbit blastocysts loaded into mOPS after exposure to 25GLY:25EG or 25EG:SUC. Embryos cryopreserved in mOPS and 25GLY:25EG solution gave rise to rates of live offspring (51.7%) not significantly different to those achieved using fresh embryos (58.5%). In conclusion, the modified (sealed) OPS method allows vitrification of the cryoprotectant solution at a lower concentration of cryoprotectants than that generally used in vitrification procedures. Rabbit blastocysts cryopreserved using a 25GLY:25EG solution in mOPS showed a similar rate of in vivo development after thawing to that shown by fresh embryos.  相似文献   

10.
The objective of this study was to improve the efficiency of cryopreservation of pronuclear-stage (PN) mouse embryos. A novel vitrification technique (solid surface vitrification, SSV) was compared with a convential one in straws both for cryosurvival and obtaining progeny from cryopreserved PN mouse embryos. In the SSV method, 15-20 PN embryos were exposed to vitrification solutions for approximately 20 sec after equilibration, and then they were dropped in 2 microl drops onto a pre-cooled (-150 to -180 degrees C) metal surface. In the straws method, groups of 5-10 PN embryos were loaded in a single straw after equilibration. In experiment I, it was compared the effect of the vitrification solutions alone, without vitrification. No reduction was detected in survival, cleavage and blastocysts rates and the lowest development rate was obtained from hatched blastocyst for 20 min equilibration (24.5%). In experiment II, SSV method resulted in significantly higher survival and cleavage rates than that of in-straw vitrified 15-20 min group (87% vs. 60%, 83% vs. 67%, respectively; P < 0.05). There were no statistical differences among any of the blastocyts groups. However, there was a statistical difference in hatched blastocysts between 15 to 5, 10, and 20 min (P < 0.05). In experiment III, it was found no major effect among equilibration time periods in toxicity groups according to the mean cell number of blastocysts developed from PN embryos. But, there was a significant differences between 15 min SSV and 10 min in straw vitrified according to the mean cell number of blastocysts developed from PN embryos following vitrification (P < 0.05). The good results were obtained from 15 min equilibration group for SSV and 10 min equilibration group for straw vitrification. In the last experiment, embryo transfer after vitrification and toxicity was investigated. There were significant differences between SSV and straw just on the rate of pups born (30% and 20.5% respectively; P < 0.05). In conclusion, vitrification of PN mouse embryos by SSV can result in high rates of in vitro development to expanded and hatched blastocyst stage and in vivo development to live pups.  相似文献   

11.
Piglets born after vitrification of embryos using the open pulled straw method   总被引:13,自引:0,他引:13  
Morulae and unhatched blastocysts from Large White hyperprolific (LWh) and Meishan (MS) gilts were selected to test an ultrarapid open pulled straw (OPS) vitrification method with two media. The viability of vitrified/warmed embryos was estimated by the percentage of embryos that developed to the hatched blastocyst stage in vitro or by birth after transfer. In Experiment 1, two cryoprotectant dilution media were compared for cryopreservation of MS and LWh blastocysts: TCM was a standard Hepes-buffered TCM199 + 20% NBCS medium and PBS was a PBS + 20% NBCS medium. After a two-step equilibration in ethylene glycol, dimethyl sulfoxide, and sucrose, 2-5 blastocysts were loaded into OPS and plunged into liquid nitrogen. Embryos were warmed; a four-step dilution with decreasing concentrations of sucrose was applied. In PBS, LWh blastocysts (27%) had a lower viability in vitro than MS blastocysts (67%; P = 0.001). In TCM, no significant difference was observed between genotypes (41% for LWh and 43% for MS blastocysts) and both viability rates were lower than that of the control groups. In Experiment 2, morula-stage LWh and MS embryos were vitrified and warmed using PBS. The viability rate was low and did not differ between LWh (11%) and MS (14%). In Experiment 3, 200 MS and 200 LWh blastocysts were vitrified/warmed as described in Experiment 1 (PBS). In each of 20 MS recipients, 20 embryos were transferred. The farrowing rate was 55% and recipients farrowed four and five piglets (median) for MS and LWh blastocysts, respectively. The OPS method is therefore appropriate for cryopreservation of unhatched porcine blastocysts.  相似文献   

12.
The effectiveness of three cryopreservation protocols (slow freezing, short equilibration vitrification and long equilibration vitrification) on in vitro-derived cattle embryos at expanded blastocyst and pronuclear stages was compared. 199 expanded blastocysts of good quality were assigned randomly into four treatment groups [control, non-cryopreserved (fresh, unfrozen); and the three cryopreservation methods]. The re-expansion of the cryopreserved blastocysts after 24 h in vitro culture was similar to that of the fresh control group. However, the hatching rate of expanded blastocysts after 48 h culture was significantly less for the slow freezing group (31/47; 66.0%) than for both the short equilibration vitrification (46/51; 90.2%) and long equilibration vitrification groups (42/50; 84.0%). Denuded presumptive zygotes at the pronuclear stage (14–18 h post-insemination) were assigned randomly to the same four treatment groups and, following thawing, embryos were assessed for their capacity to cleave and to develop into a blastocyst. Overall, cleavage rates of cryopreserved zygotes were significantly less than those of the fresh control. The blastocyst formation rate of slow-frozen zygotes (4/81; 4.9%) was significantly less than that of zygotes subjected either to short equilibration vitrification (18/82; 22.0%) or long equilibration vitrification (16/74; 21.6%). All cryopreservation groups showed rates of blastocyst formation that were significantly less than that of the fresh control (51/92; 55.4%). Collectively, our findings indicate that vitrification is the preferred technology to cryopreserve in vitro-derived cattle embryos at expanded blastocyst and pronuclear stages. Moreover, short equilibration vitrification technology can improve outcomes and be more efficient by taking less time to perform.  相似文献   

13.
The aim of this study was to determine the influence of two ethylene glycol-based vitrification solutions on in vitro and in vivo survival after in-straw cryoprotectant dilution of vitrified in vitro-produced bovine embryos. Day-7 expanded blastocysts were selected according to diameter (> or = 180 microm) and osmotic characteristics and randomly assigned to one of three groups (i) VSa: vitrification in 40% EG+17.1% SUC+0.1% PVA; (ii) VSb: vitrification in 20% EG+20% DMSO; (iii) control: non-vitrified embryos. Vitrification was performed in hand-pulled glass micropipettes (GMP) and cryoprotectant dilution in 0.25 ml straws after warming in a plastic tube. Embryo viability was assessed by re-expansion and hatching rates after 72 h of IVC and by pregnancy rates after direct transfer of vitrified embryos. No differences in re-expansion rates were observed between vitrified groups after 24 h in culture (VSa=84.5%; VSb=94.8%). However, fewer VSa embryos (55.2%, P<0.05) hatched after 72 h than the VSb (75.8%) and control embryos (80.0%). To evaluate in vivo viability, vitrified embryos (VSa=20; VSb=21) were warmed under field conditions and individually transferred to synchronous recipients. Pregnancy rates (day 60) were similar between groups (VSa=20%; VSb=19%). Greater hatching rates occurred after 72 h of IVC for EG+DMSO than EG+SUC+PVA vitrification solutions. However, using a GMP vitrification container and in-tube warming, both solutions provided similar pregnancy rates after the in-straw cryoprotectant dilution and direct embryo transfer.  相似文献   

14.
The aim of this work was to investigate the possibilities of simplification, and to outline the limits of application, of a vitrification method for cow embryos. Morulae and blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed bull semen, and subsequent culture on a granulosa cell monolayer. Vitrification was performed by equilibration of embryos with 12.5% ethylene glycol and 12.5% dimethylsulphoxide at 20–22°C for 60 s, then with 25% ethylene glycol and 25% dimethylsulphoxide at 4°C for another 60 s. Embryos were then loaded in straws, placed in liquid nitrogen vapour for 2 min, and then plunged. Straws were thawed in a 22°C water-bath, the embryos were directly rehydrated and further incubated in straw, and were then expelled and cultured in vitro for 72 h. In the first experiment, embryos of different age and developmental stage (Day 5 compacted morulae, Day 6 early blastocysts, Days 6 and 7 blastocysts, Day 7 expanded blastocysts and Day 8 hatched blastocysts) as well as Days 7 and 5 blastocysts previously subjected to partial zona dissection were vitrified. After thawing, the re-expansion rates of blastocysts and zona-dissected embryos did not differ (67 and 87%, respectively), and hatching was more frequent for blastocysts frozen in advanced developmental stages (34, 47 and 63% for early blastocysts, blastocysts and expanded blastocysts, respectively). The re-expansion rate of morulae was lower (10%) and no hatching of these embryos was observed. In the second experiment, Day 7 expanded blastocysts were vitrified using PBS, PBS + albumin, TCM199 and TCM199 + calf serum as holding media. No differences in re-expansion and hatching rates were seen. However, when incubation with the concentrated cryoprotectant solution was performed at 20–22°C, the embryo survival rate decreased (PBS + albumin) or no embryo survived (TCM199 + calf serum) the vitrification procedure. In the third experiment, Day 7 expanded blastocysts were vitrified, thawed, cultured for 1 day, and then re-expanded embryos were again vitrified and thawed. Out of the 87% that survived the first cycle, 73% re-expanded and 47% hatched following the second vitrification and thawing. These observations prove that the vitrification procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages and that an intact zona is not required to obtain high survival rates.  相似文献   

15.
The Open Pulled Straw (OPS) method of vitrification has been used successfully for cryopreserving embryos of most domestic animal species. However, there is no report of a successful delivery of offspring after transfer of vitrified embryos in carnivores, even though vitrification has been a successful freezing method for species like swine whose embryos are known to be susceptible to chilling injury. Morulae and blastocysts of farmed European polecat (Mustela putorius) were vitrified and warmed before in vitro culture in modified synthetic oviductal fluid (SOF) for a period from a few hours up to 3 days before being transferred to recipients. Survival rate after vitrification, warming and in vitro culture was 51% (50/98). A total of 50 embryos were transferred surgically into the uteri of four anesthetized recipients. Two recipients delivered a total of eight offspring (2 and 6 each) for an overall survival rate of 16% (eight live cubs/50 transferred embryos). According to our knowledge, these offspring are the first carnivores produced by transfer of in vivo embryos after vitrification by OPS. Based on the present results, we suggest that OPS vitrification can be used as an alternative cryopreservation method for mustelid embryos with pup results comparable to conventional slow freezing.  相似文献   

16.
目的探讨封闭式玻璃化冷冻载体冻存小鼠卵母细胞的可行性。方法以小鼠MII期卵母细胞为模型,以开放式玻璃微细管法(GMP)为对照组,比较两种玻璃化冷冻载体对小鼠卵母细胞冷冻后的存活率、受精率、卵裂率及囊胚率的影响。结果卵母细胞经冻融后,封闭式冷冻载体组和GMP组的存活率、受精率、卵裂率和囊胚率均没有明显差异(92.80%vs93.11%,49.80%vs51.67%,36.73%vs35.83%,12.65%vs14.17%%;P〉0.05)。结论封闭式冷冻载体能安全、有效的冷冻保存小鼠卵母细胞。  相似文献   

17.
Although cryopreservation of certain mammalian embryos is now a routine procedure, considerable differences of efficiency exist depending on stage, species and origin (in vivo or in vitro produced). Factors that are suspected to cause most of these differences are the amount of the intracellular lipid droplets and the different microtubular structure leading to chilling injury as well as the volume/surface ratio influencing the penetration of cryoprotectants. A new approach, the Open Pulled Straw (OPS) method, which renders very high cooling and warming rates (over 20,000°C/min) and short contact with concentrated cryoprotective additives (less than 30 sec over −180°C) offers a possibility to circumvent chilling injury and to decrease toxic and osmotic damage. In this paper we report the vitrification by the OPS method of in vitro produced bovine embryos at various stages of development. Embryos cryopreserved from Day 3 to Day 7 (Day 0 = day of fertilization) exhibited development into blastocysts at rates equivalent to those of control embryos; even those cryopreserved on Day 1 or 2 exhibited only somewhat reduced survival. Eighty-one percent of Day 8 hatched blastocysts also survived the procedure. The method was also successfully used for bovine oocytes; of 184 vitrified oocytes, 25% developed into blastocysts after fertilization and culture for 7 days. Pregnancies were achieved following transfer after vitrification at both the oocyte and blastocyst stage. The OPS vitrification offers a new way to solve basic problems of reproductive cryobiology and may have practical impact on animal biotechnology and human assisted reproduction. Mol. Reprod. Dev. 51:53–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
In this study, three different vitrification systems (open pulled straw: OPS; superfine open pulled straw: SOPS; and Vit-Master technology using SOPS: Vit-Master-SOPS) were compared in order to investigate the influence of cooling rate on in vitro development of vitrified/warmed porcine morulae, early blastocysts, or expanded blastocysts. Embryos were obtained surgically on Day 6 of the estrous cycle (D0 = onset of estrus) from weaned crossbred sows, classified and pooled according their developmental stage. A subset of embryos from each developmental stage was cultured to evaluate the in vitro development of fresh embryos; the remaining embryos were randomly allocated to each vitrification system. After vitrification and warming, embryos were cultured in vitro for 96 h in TCM199 with 10% fetal calf serum at 39 degrees C, in 5% CO(2) in humidified air. During the culture period, embryos were morphologically evaluated for their developmental progression. The developmental stage of embryos at collection affected the survival and hatching rates of vitrified/warmed embryos (P < 0.001). The vitrification system or the interaction of vitrification system and developmental stage had no effect on these parameters (P > 0.05). Vitrified expanded blastocysts showed the best development in vitro (P < 0.001), with survival and hatching rates similar to those of fresh expanded blastocysts. The hatching rate of fresh morula or early blastocyst stage embryos was higher than their vitrified counterparts. In conclusion, under our experimental conditions, cooling rates greater than 20,000 degrees C/min, as occurs when SOPS or Vit-Master-SOPS systems are used, do not enhance the efficiency of in vitro development of vitrified porcine embryos.  相似文献   

19.
Unhatched blastocysts from Large White hyperprolific gilts (n=103) were identified, measured and vitrified using the Open Pulled Straw (OPS) technique to evaluate the effects of the collected blastocyst size and cryoprotectant concentrations used for vitrification, and the number of embryos transferred per recipient. Vitrified/warmed blastocyst viability was estimated in vitro, as the percentage of embryos developing after 72h, and in vivo, on pregnancy Day 30. In the in vitro study, we compared the use of three cryoprotectant concentrations (16.5, 18, or 20% DMSO+16.5, 18, or 20% EG+0.4M sucrose). Survival rates differed significantly between the control (98.3%) and the three cryoprotectant concentrations (67, 62.3, and 57%, respectively). Blastocyst size at vitrification determined the further in vitro development of embryos (26% survival for blastocysts 126-144microm versus 100% for blastocysts >199microm). For the in vivo study, blastocysts were vitrified using cryoprotectant concentrations of 16.5 or 18% DMSO+EG and transferred surgically in groups of 20 or 30 per recipient (n=40). Recipients were slaughtered on pregnancy D30. No significant differences were detected in gestation rates (50-70%) and embryo survival rates (14.7-25%), although survival was higher (P=0.0003) when 20 blastocysts were transferred compared to 30 (24.7% versus 15.5%). Our findings indicate that best results, in terms of subsequent in vivo embryo survival, were achieved after transferring 20 embryos at the blastocyst or expanded blastocyst stage, previously vitrified using cryoprotectant concentrations of 16.5 or 18%.  相似文献   

20.
Several closed vitrification devices that avoid contact with liquid nitrogen have been reported. Recently, based on the Kitasato Vitrification System (KVS), we developed the Closed-KVS, which is a closed vitrification device. The KVS is an open vitrification device that can absorb excess vitrification solution. In this study, we performed two experiments to evaluate the efficacy of the Closed-KVS as a vitrification device for the cryopreservation of mouse embryos at the blastocyst and two-cell stage. In the first experiment, the blastocysts were vitrified using either the Closed-KVS or the KVS (control device). The survival, re-expansion, and hatching rates were not significantly different between embryos vitrified using the Closed-KVS and those vitrified using the KVS. In the second experiment, we evaluated the embryonic development of the two-cell stage embryos vitrified using the Closed-KVS. There were no significant differences in the survival, blastocyst formation, or hatching rates between vitrified or non-vitrified embryos. Additionally, we evaluated the cooling and warming rates of these devices using a numerical simulation method. The cooling rates of the Closed-KVS were similar regardless of whether the outer cap was pre-cooled and were lower than those of the KVS. However, the warming rates of the Closed-KVS (irrespective of cap pre-cooling) were the same as those of the KVS (612,000 °C/min). In summary, the Closed-KVS is a novel closed vitrification device for the cryopreservation of mouse embryos at the blastocyst and two-cell stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号