首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medial branch (Med) of the hypoglossal nerve innervates the tongue protrudor muscles, whereas the lateral branch (Lat) innervates tongue retractor muscles. Our previous finding that pharyngeal airflow increased during either selective Med stimulation or whole hypoglossal nerve (WHL) stimulation (coactivation of protrudor and retractor muscles) led us to examine how WHL, Med, or Lat stimulation affected tongue movements and nasopharyngeal (NP) and oropharyngeal (OP) airway volume. Electrical stimulation of either WHL, Med, or Lat nerves was performed in anesthetized, tracheotomized rats while magnetic resonance images of the NP and OP were acquired (slice thickness 0.5 mm, in-plane resolution 0.25 mm). NP and OP volume was greater during WHL and Med stimulation vs. no stimulation (P < 0.05). Ventral tongue depression (measured in the midsagittal images) and OP volume were greater during Med stimulation than during WHL stimulation (P < 0.05). Lat stimulation did not alter NP volume (P = 0.39). Our finding that either WHL or Med stimulation dilates the NP and OP airways sheds new light on the control of pharyngeal airway caliber by extrinsic tongue muscles and may lead to new treatments for patients with obstructive sleep apnea.  相似文献   

2.
The mammalian pharynx is a hollow muscular tube that participates in ingestion and respiration, and its size, shape, and stiffness can be altered by contraction of skeletal muscles that lie inside or outside of its walls. MRI was used to determine the interaction between pharyngeal pressure and selective stimulation of extrinsic tongue muscles on the shape of the rat nasopharynx. Pressure (-9, -6, -3, 3, 6, and 9 cmH?O) was applied randomly to the isolated pharyngeal airway of anesthetized rats that were positioned in a 4.7-T MRI scanner. The anterior-posterior (AP) and lateral diameters of the nasopharynx were measured in eight axial slices at each level of pressure, with and without bilateral hypoglossal nerve stimulation (0.1-ms pulse, 1/3 maximal force, 80 Hz). The rat nasopharynx is nearly circular, and positive pharyngeal pressure caused similar expansion of AP and lateral diameters; as a result, airway shape (ratio of lateral to AP diameter) remained constant. Negative pressure did not change AP or lateral diameter significantly, suggesting that a negative pressure reflex activated the tongue or other pharyngeal muscles. Stimulation of tongue protrudor muscles alone or coactivation of protrudor and retractor muscles caused greater AP than lateral expansion, making the nasopharynx slightly more elliptical, with the long axis in the AP direction. These effects tended to be more pronounced at negative pharyngeal pressures and greater in the caudal than rostral nasopharynx. These data show that stimulation of rodent tongue muscles can adjust pharyngeal shape, extending previous work showing that tongue muscle contraction alters pharyngeal compliance and volume, and provide physiological insight that can be applied to the treatment of obstructive sleep apnea.  相似文献   

3.
Hypoxic episodes can evoke a prolonged augmentation of inspiratory motor output called long-term facilitation (LTF). Hypoglossal (XII) LTF has been assumed to represent increased tongue protrudor muscle activation and pharyngeal airway dilation. However, recent studies indicate that tongue protrudor and retractor muscles are coactivated during inspiration, a behavior that promotes upper airway patency by reducing airway compliance. These experiments tested the hypothesis that XII LTF is manifest as increased inspiratory drive to both tongue protrudor and retractor muscles. Neurograms were recorded in the medial XII nerve branch (XIIMED; contains tongue protrudor motor axons), the lateral XII nerve branch (XIILAT; contains tongue retractor motor axons), and the phrenic nerve in anesthetized, vagotomized, paralyzed, ventilated male rats. Strict isocapnia was maintained for 60 min after five 3-min hypoxic episodes (arterial Po(2) = 35 +/- 2 Torr) or sham treatment. Peak inspiratory burst amplitude showed a persistent increase in XIIMED, XIILAT, and phrenic nerves during the hour after episodic hypoxia (P < 0.05 vs. sham). This effect was present regardless of the quantification method (e.g., % baseline vs. percent maximum); however, comparisons of the relative magnitude of LTF between neurograms (e.g., XIIMED vs. XIILAT) varied with the normalization procedure. There was no persistent effect of episodic hypoxia on inspiratory burst frequency (P > 0.05 vs. sham). These data demonstrate that episodic hypoxia induces LTF of inspiratory drive to both tongue protrudor and retractor muscles and underscore the potential contribution of tongue muscle coactivation to regulation of upper airway patency.  相似文献   

4.
The influence of systemic hypoxia on the endurance performance of tongue protrudor and retractor muscles was examined in anesthetized, ventilated rats. Tongue protrudor (genioglossus) or retractor (hyoglossus and styloglossus) muscles were activated via medial or lateral XII nerve branch stimulation (0.1-ms pulse; 40 Hz; 330-ms trains; 1 train/s). Maximal evoked potentials (M waves) of genioglossus and hyoglossus were monitored with electromyography. Fatigue tests were performed under normoxic and hypoxic (arterial PO(2) = 50 +/- 1 Torr) conditions in separate animals. The fatigue index (FI; %initial force) after 5 min of normoxic stimulation was 85 +/- 6 and 79 +/- 7% for tongue protrudor and retractor muscles, respectively; these values were significantly lower during hypoxia (protrudor FI = 52 +/- 10, retractor FI = 18 +/- 6%; P < 0.05). Protrudor and retractor muscle M-wave amplitude declined over the course of the hypoxic fatigue test but did not change during normoxia (P < 0.05). We conclude that hypoxia attenuates tongue protrudor and retractor muscle endurance performance; potential mechanisms include neuromuscular transmission failure and/or diminished sarcolemmal excitability.  相似文献   

5.
Hypoglossal (XII) nerve recordings indicate that pulmonary C-fiber (PCF) receptor activation reduces inspiratory bursting and triggers tonic discharge. We tested three hypotheses related to this observation: 1) PCF receptor activation inhibits inspiratory activity in XII branches innervating both tongue protrudor muscles (medial branch; XIImed) and retractor muscles (lateral branch; XIIlat); 2) reduced XII neurogram amplitude reflects decreased XII motoneuron discharge rate; and 3) tonic XII activity reflects recruitment of previously silent motoneurons. Phrenic, XIImed, and XIIlat neurograms were recorded in anesthetized, paralyzed, and ventilated rats. Capsaicin delivered to the jugular vein reduced phrenic bursting at doses of 0.625 and 1.25 mug/kg but augmented bursting at 5 mug/kg. All doses reduced inspiratory amplitude in XIImed and XIIlat (P < 0.05), and these effects were eliminated following bilateral vagotomy. Single-fiber recordings indicated that capsaicin causes individual XII motoneurons to either decrease discharge rate (n = 101/153) or become silent (n = 39/153). Capsaicin also altered temporal characteristics such that both XIImed and XIIlat inspiratory burst onset occurred after the phrenic burst (P < 0.05). Increases in tonic discharge after capsaicin were greater in XIImed vs. XIIlat (P < 0.05); single-fiber recordings indicated that tonic discharge reflected recruitment of previously silent motoneurons. We conclude that PCF receptor activation reduces inspiratory XII motoneuron discharge and transiently attenuates neural drive to both tongue protrudor and retractor muscles. However, tonic discharge appears to be selectively enhanced in tongue protrudor muscles. Accordingly, reductions in upper airway stiffness associated with reduced XII burst amplitude may be offset by enhanced tonic activity in tongue protrudor muscles.  相似文献   

6.
We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to -5.0 cm H2O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency.  相似文献   

7.
The present study evaluated the effect of coactivation of tongue protrusors and retractors on pharyngeal patency in patients with obstructive sleep apnea. The effect of genioglossus (GG), hyoglossus (HG), and coactivation of both on nasal pressure (Pn):flow relationships was evaluated in a sleep study (SlS, n = 7) and during a propofol anesthesia study (AnS, n = 7). GG was stimulated with sublingual surface electrodes in SlS and with intramuscular electrodes in AnS, while HG was stimulated with surface electrodes in both groups. In the AnS, the cross-sectional area (CSA):Pn relationships was measured with a pharyngoscope to estimate velopharyngeal compliance . In the SlS, surface stimulation of GG had no effect on the critical pressure (Pcrit), HG increased Pcrit from 2.8 +/- 1.7 to 3.7 +/- 1.6 cmH(2)O, but coactivation lowered Pcrit to 0.2 +/- 1.9 cmH(2)O (P < 0.01 for both). In the AnS, intramuscular stimulation of GG lowered Pcrit from 2.6 +/- 1.3 to 1.0 +/- 2.8 cmH(2)O, HG increased Pcrit to 6.2 +/- 2.5 cmH(2)O (P < 0.01), and coactivation had a similar effect to that of GG (Pcrit = 1.2 +/- 2.4 cmH(2)O, P < 0.05). None of the interventions affected significantly velopharyngeal compliance. We conclude that the beneficial effect of coactivation depends on the pattern of GG fiber recruitment: although surface stimulation of GG failed to protrude the tongue, it prevented the occlusive effect of the retractor, thereby improving pharyngeal patency during coactivation. Stimulation of deeper GG fibers with intramuscular electrodes enlarged the pharynx, and coactivation had no additive effect.  相似文献   

8.
This study was designed to investigate the influence of hypoxia-evoked augmented breaths (ABs) on respiratory-related tongue protrudor and retractor muscle activities and inspiratory pump muscle output. Genioglossus (GG) and hyoglossus (HG) electromyogram (EMG) activities and respiratory-related tongue movements were compared with peak esophageal pressure (Pes; negative change in pressure during inspiration) and minute Pes (Pes x respiratory frequency = Pes/min) before and after ABs evoked by sustained poikilocapnic, isocapnic, and hypercapnic hypoxia in spontaneously breathing, anesthetized rats. ABs evoked by poikilocapnic and isocapnic hypoxia triggered long-lasting (duration at least 10 respiratory cycles) reductions in GG and HG EMG activities and tongue movements relative to pre-AB levels, but Pes was reduced transiently (duration of <10 respiratory cycles) after ABs. Adding 7% CO(2) to the hypoxic inspirate had no effect on the frequency of evoked ABs, but this prevented long-term declines in tongue muscle activities. Bilateral vagotomy abolished hypoxia-induced ABs and stabilized drive to the tongue muscles during each hypoxic condition. We conclude that, in the rat, hypoxia-evoked ABs 1) elicit long-lasting reductions in protrudor and retractor tongue muscle activities, 2) produce short-term declines in inspiratory pump muscle output, and 3) are mediated by vagal afferents. The more prolonged reductions in pharyngeal airway vs. pump muscle activities may lead to upper airway narrowing or collapse after spontaneous ABs.  相似文献   

9.
Immunohistochemistry for two nociceptive transducers, the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2), was performed on the pharynx and its adjacent regions. TRPV1-immunoreactivity (IR) was detected in nerve fibers beneath and within the epithelium and/or taste bud-like structure. In the pharynx, these nerve fibers were abundant in the naso-oral part and at the border region of naso-oral and laryngeal parts. They were also numerous on the laryngeal side of the epiglottis and in the soft palate. TRPV2-IR was expressed by dendritic cells in the pharynx and epiglottis, as well as in the root of the tongue and soft palate. These cells were located in the epithelium and lamina propria. TRPV2-immunoreactive (IR) dendritic cells were numerous in the naso-oral part of the pharynx, epiglottis, and tongue. Abundance of TRPV2-IR dendritic processes usually obscured the presence of TRPV2-IR nerve fibers in these portions. However, some TRPV2-IR nerve fibers could be observed in the epithelium of the soft palate. Retrograde tracing method also revealed that sensory neurons which innervate the pharynx or soft palate were abundant in the jugular–petrosal ganglion complex and relatively rare in the nodose ganglion. In the jugular–petrosal ganglion complex, TRPV1- and TRPV2-IR were expressed by one-third of pharyngeal and soft palate neurons. TRPV2-IR was also detected in 11.5 % pharyngeal and 30.9 % soft palate neurons in the complex. Coexpression of TRPV1 and CGRP was frequent among pharyngeal and soft palate neurons. The present study suggests that TRPV1- and TRPV2-IR jugular–petrosal neurons may be associated with the regulation of the swallowing reflex.  相似文献   

10.
The reflex upper airway (UA) motor response to UA negative pressure (UANP) is attenuated by neuromuscular blockade. We hypothesized that this is due to a reduction in the sensitivity of laryngeal mechanoreceptors to changes in UA pressure. We examined the effect of neuromuscular blockade on hypoglossal motor responses to UANP and to asphyxia in 15 anesthetized, thoracotomized, artificially ventilated rats. The activity of laryngeal mechanoreceptors is influenced by contractions of laryngeal and tongue muscles, so we studied the effect of selective denervation of these muscle groups on the UA motor response to UANP and to asphyxia, recording from the pharyngeal branch of the glossopharyngeal nerve (n = 11). We also examined the effect of tongue and laryngeal muscle denervation on superior laryngeal nerve (SLN) afferent activity at different airway transmural pressures (n = 6). Neuromuscular blockade and denervation of laryngeal and tongue muscles significantly reduced baseline UA motor nerve activity (P < 0.05), caused a small but significant attenuation of the motor response to asphyxia, and markedly attenuated the response to UANP. Motor denervation of tongue and laryngeal muscles significantly decreased SLN afferent activity and altered the response to UANP. We conclude that skeletal muscle relaxation reduces the reflex UA motor response to UANP, and this may be due to a reduction in the excitability of UA motor systems as well as a decrease of the response of SLN afferents to UANP.  相似文献   

11.
目的建立针电极口内刺激猴软腭肌肉诱发腭咽闭合运动的模式,取得软腭肌肉运动的有效刺激数值,为软腭肌肉功能重建奠定基础。方法通过解剖成年猕猴软腭的五组肌肉,确定其体表位置;利用实验动物用腭部肌肉电极定位刺激器及针式电极对软腭肌肉进行有效刺激;结合鼻咽纤维镜、头颅侧位X片及软腭造影技术观察、记录肌肉收缩及腭咽闭合动作。结果在猕猴口内定位目标肌肉进行针电极刺激可诱发肌肉收缩。刺激电压为3 V、刺激频率为20 Hz时均能诱发单侧软腭肌肉的有效收缩;单侧腭帆提肌在刺激电压为5 V、20 Hz时可发生腭咽闭合动作。咽腭肌、舌腭肌在刺激电压5 V、刺激频率100 Hz时发生软腭下降动作。腭帆张肌仅发生收缩,而未发生腭咽闭合。应用鼻咽纤维镜和X线成像技术配合能记录腭咽闭合动作。结论弥猴可作为研究软腭肌肉运动模式的实验动物。应用电极刺激软腭肌肉,可初步建立腭咽闭合的动作模式。  相似文献   

12.
The location of several facialis innervated muscles has been determined by injecting individual muscles with horseradish peroxidase. The depressors of the lower jaw are represented in the dorsal facial motor nucleus and the tongue retractor muscles in the intermediate facial motor nucleus. HRP was also directly applied to the rostral and caudal branch of the facial nerve. The afferent connections are described including two small projections to the principal sensory nucleus and n. interpolaris which were not found in birds before.  相似文献   

13.
Mechanical stimulation of the pharyngeal areas readily elicits reflex swallowing. However, it is much more difficult for electrical stimulation of the glossopharyngeal nerve (GPN) to evoke reflex swallowing than it is for stimulation of the superior laryngeal nerve (SLN) to do so. These paradoxical findings remain unexplained; hence, the main purpose of this study was to explain this contradiction by using a urethane-anesthetized rat. Mechanical stimulation easily elicited reflex swallowing from the pharynx. The posterior pillars, posterior pharyngeal wall, and the soft palate of the rat were extremely reflexogenic areas for swallowing. Sectioning the pharyngeal branch of the GPN (GPN-ph), however, eliminated the swallowing reflex from these areas. In contrast, sectioning the lingual branch of the GPN had no effect on the elicitation of swallowing. Electrical stimulation of the GPN-ph and SLN elicited sequentially occurring swallows. The relationship between stimulus frequency and the latency of swallowing for the GPN-ph was approximately the same as that for the SLN. These results indicate that the GPN-ph plays a major role in the initiation of reflex swallowing from the pharynx in rats.  相似文献   

14.
We studied changes in orofacial behavior and the arrangement of bilateral hypoglossal nuclei after the neurectomy of the medial branch of the unilateral hypoglossal nerve in cats. After recovery from surgery in a head holder, the animals were acclimated to take and chew fish paste (1.8 g) from a spoon and lick milk from a wetted paintbrush. Next we performed a neurectomy in the unilateral hypoglossal nerve after training. We firstly recorded behavior during the taking of fish paste and licking of milk, and then performed a neurectomy in the unilateral hypoglossal nerve. After nerve cutting, the cats’ tongue deviated toward the cut side when they licked food, and bilateral activities of EMGs in the genioglossus muscles became stable in about 1 month. After that, we injected two kinds of fluorescent dye (10% Evans blue, EB, and 3% Fast blue, FB) into the bilateral genioglossus muscles using syringes (0.15 ml in each), respectively. Although each injection of FB and EB into the bilateral genioglossus muscles in normal cats revealed cells positively stained with each dye in the hypoglossal nuclei of each injection site, in cats 1 month after nerve cutting, fluorescent dye was only observed in positive cells in the hypoglossal nucleus of the intact side and the dye injected into the neurectomy side showed a mixture into positive cells of the intact side. The findings suggest that muscles in the neurectomy side may be compensated by regeneration of the peripheral nerves on the intact side.  相似文献   

15.
Cobalt labelling studies on the localization and morphology of the frog's hypoglossal nucleus have revealed three subnuclei. The dorsomedial subnucleus innervates the geniohyoid, hyoglossus, genioglossus and the intrinsic tongue muscles. The ventrolateral subnucleus supplies the sternohyoid, geniohyoid, omohyoid and intrinsic tongue muscles. The intermediate subnucleus innervates the omohyoid, geniohyoid and intrinsic tongue muscles. Neurons innervating protractor, retractor and intrinsic tongue muscles differ in their soma surface area and in their dendritic arborization pattern. It is concluded that there exists a musculotopic organization in the frog's hypoglossal nucleus and that motoneurons subserving different function in tongue movements disclose characteristic morphological differences.  相似文献   

16.
The activity of the hypoglossal nerve was recorded during pharyngeal loading in sleeping dogs with chronically implanted cuff electrodes. Three self-coiling spiral-cuff electrodes were implanted in two beagles for durations of 17, 7, and 6 mo. During quiet wakefulness and sleep, phasic hypoglossal activity was either very small or not observable above the baseline noise. Applying a perpendicular force on the submental region by using a mechanical device to narrow the pharyngeal airway passage increased the phasic hypoglossal activity, the phasic esophageal pressure, and the inspiratory time in the next breath during non-rapid-eye-movement sleep. The phasic hypoglossal activity sustained at the elevated level while the force was present and increased with increasing amounts of loading. The hypoglossal nerve was very active in rapid-eye-movement sleep, especially when the submental force was present. The data demonstrate the feasibility of chronic recordings of the hypoglossal nerve with cuff electrodes and show that hypoglossal activity has a fast and sustained response to the internal loading of the pharynx induced by applying a submental force during non-rapid-eye-movement sleep.  相似文献   

17.
The pharyngeal bone musculature of the carp, Cyprinus carpio   总被引:1,自引:0,他引:1  
  相似文献   

18.
To study factors influencing patency and configuration of the upper airway, we studied 11 infant cadavers using endoscopy and photography. In most cases, studies were performed shortly after death. The naso-, oro-, and hypopharynx and the larynx were studied. The upper airway was sealed at the nose and mouth so that transmural airway pressure could be raised or lowered. As pressure was lowered airway closure was seen in each of the four regions studied. With respect to closing pressure, the oropharynx was the most compliant region and the larynx the least compliant. In the naso-, oro-, and hypopharynx, lowering the transmural pressure was associated with inward movement of the anterior, posterior, and lateral airway walls. In the larynx, closure occurred by vocal cord opposition in the midline. Tension applied to the genioglossus and geniohyoid tongue muscles had an effect opposite to that of airway suction, causing a more or less symmetrical dilation of the naso- and oropharynx. When the airway was closed, additional tension was needed to produce airway reopening, suggesting that adhesion forces act to maintain airway closure. Neck flexion caused pharyngeal closure, and neck extension caused pharyngeal dilation. Secretions adherent to the walls of the airway visibly narrowed its lumen. The relevance of these findings for the obstructive sleep apnea and laryngomalacia syndromes is discussed.  相似文献   

19.
Behavioral observations demonstrate that bilateral deafferentation of the hypoglossal nerves in the marine toad (Bufo marinus) prevents mouth opening during feeding. In the present study, we used high-speed videography, electromyography (EMG), deafferentation, muscle stimulation, and extracellular recordings from the trigeminal nerve to investigate the mechanism by which sensory feedback from the tongue controls the jaw muscles of toads. Our results show that sensory feedback from the tongue enters the brain through the hypoglossal nerve during normal feeding. This feedback appears to inhibit both tonic and phasic activity of the jaw levators. Hypoglossal feedback apparently functions to coordinate tongue protraction and mouth opening during feeding. Among anurans, the primitive condition is the absence of a highly protrusible tongue and the absence of a hypoglossal sensory feedback system. The hypoglossal feedback system evolved in parallel with the acquisition of a highly protrusible tongue in toads and their relatives.  相似文献   

20.
We studied the effects of cricothyroid muscle (CT) contraction on upper airway flow dynamics in eight prone open-mouth anesthetized dogs. Animals were mechanically ventilated via a tracheostomy while a constant airflow (Vuaw) passed through the isolated upper airway. Nasal airflow (Vn) was monitored using a nasal mask and pneumotachograph. Bilateral CT contraction was induced by electrical stimulation of the external branches of the superior laryngeal nerves. During CT contraction with Vuaw of 100-443 ml/s in the inspiratory direction, total upper airway resistance (Ruaw) fell by 49.1 +/- 5.4% (SE) while supraglottic resistance fell by 63.6 +/- 3.6%; simultaneously Vn fell by 55.3 +/- 3.8% and Vuaw increased by 7.2 +/- 1.7%. Similar results were obtained when Vuaw was in the expiratory direction. In three dogs in which the attachments of the CT to either the thyroid or cricoid cartilage were severed, superior laryngeal nerve stimulation had no systematic effect on Ruaw. Because visual assessment during CT contraction consistently revealed dilation of the piriform recesses, we suggest that CT contraction is associated with pharyngeal dilation, which in open-mouth dogs (with overlapping soft palate and epiglottis) redistributes flow to the oral route with a net reduction in Ruaw. Thus the CT may have a respiratory role as a pharyngeal dilator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号