首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone.

Methodology/Principal Findings

Here, a mathematical model is proposed to explore the hypothesis that a host''s response to pathogen challenge largely depends on the interaction between a host''s genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal''s ability to cope with pathogens and greater resistance may reduce growth in the short-term.

Significance

Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response.  相似文献   

2.
The evolution of genetic canalization under fluctuating selection   总被引:6,自引:0,他引:6  
Abstract.— If the direction of selection changes from generation to generation, the ability to respond to selection is maladaptive: the response to selection in one generation leads to reduced fitness in the next. Because the response is determined by the amount of genetic variance expressed at the phenotypic level, rapidly fluctuating selection should favor modifier genes that reduce the phenotypic effect of alleles segregating at structural loci underlying the trait. Such reduction in phenotypic expression of genetic variation has been named "genetic canalization." I support this argument with a series of two- and multilocus models with alternating linear selection and Gaussian selection with fluctuating optimum. A canalizing modifier gene affects the fitness of its carriers in three ways: (1) it reduces the phenotypic consequences of genetic response to previous selection; (2) it reduces the genetic response to selection, which is manifested as linkage disequilibrium between the modifier and structural loci; and (3) it reduces the phenotypic variance. The first two effects reduce fitness under directional selection sustained for several generations, but improve fitness when the direction of selection has just been reversed. The net effect tends to favor a canalizing modifier under rapidly fluctuating selection regimes (period of eight generations or less). The third effect improves fitness of the modifier allele if the fitness function is convex and reduces it if the function is concave. Under fluctuating Gaussian selection, the population is more likely to experience the concave portion of the fitness function when selection is stronger. Therefore, only weak to moderately strong fluctuating Gaussian selection favors genetic canalization. This paper considerably broadens the conditions that favor genetic canalization, which so far has only been postulated to evolve under long-term stabilizing selection.  相似文献   

3.
A population in which there is stabilizing selection acting on quantitative traits toward an intermediate optimum becomes monomorphic in the absence of mutation. Further, genotypes that show least environmental variation are also favored, such that selection is likely to reduce both genetic and environmental components of phenotypic variance. In contrast, intraspecific competition for resources is more severe between phenotypically similar individuals, such that those deviating from prevailing phenotypes have a selective advantage. It has been shown previously that polymorphism and phenotypic variance can be maintained if competition between individuals is "effectively" stronger than stabilizing selection. Environmental variance is generally observed in quantitative traits, so mechanisms to explain its maintenance are sought, but the impact of competition on its magnitude has not previously been studied. Here we assume that a quantitative trait is subject to selection for an optimal value and to selection due to competition. Further, we assume that both the mean and variance of the phenotypic value depend on genotype, such that both may be affected by selection. Theoretical analysis and numerical simulations reveal that environmental variance can be maintained only when the genetic variance (in mean phenotypic value) is constrained to a very low level. Environmental variance will be replaced entirely by genotypic variance if a range of genotypes that vary widely in mean phenotype are present or become so by mutation. The distribution of mean phenotypic values is discrete when competition is strong relative to stabilizing selection; but more genotypes segregate and the distribution can approach continuity as competition becomes extremely strong. If the magnitude of the environmental variance is not under genetic control, there is a complementary relationship between the levels of environmental and genetic variance such that the level of phenotypic variance is little affected.  相似文献   

4.
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

5.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   

6.
Ragland GJ  Carter PA 《Heredity》2004,92(6):569-578
The size of an organism at any point during ontogeny often has fitness consequences through either direct selection on size or through selection on size-related morphological, performance, or life history traits. However, the evolutionary response to selection on size across ontogeny (a growth trajectory) may be limited by genetic correlations across ages. Here we characterize the phenotypic and genetic covariance structure of length and mass growth trajectories in a natural population of larval Ambystoma macrodactylum using function-valued quantitative genetic analyses and principal component decomposition. Most of the phenotypic and genetic variation in both growth trajectories appears to be confined to a single principal component describing a pattern of positive covariation among sizes across all ages. Higher order principal components with no significant associated genetic variation were identified for both trajectories, suggesting that evolution towards certain patterns of negative covariation between sizes across ages is constrained. The well-characterized positive relationship between size at metamorphosis and fitness in pond-breeding amphibians predicts that the across-age covariance structure will strongly limit evolution only if there is negative selection on size prior to metamorphosis. The pattern of genetic covariation observed in this study is similar to that observed in other vertebrate taxa, indicating that size may often be highly genetically and phenotypically integrated across ontogeny. Additionally, we find that phenotypic and genetic analyses of growth trajectories can yield qualitatively similar patterns of covariance structure.  相似文献   

7.
The phenotypic view of selection assumes that genetic responses can be predicted from selective forces and heritability — or in the classical quantitative genetic equation: R = h2S. However, data on selection in bird populations show that often no selection responses is found, despite consistent selective forces on phenotypes and significant heritable variation. Such discrepancies may arise due to the assumption that selection only acts on observed phenotypes. We derive a general selection equation that takes into account the possibility that some relevant (internal or external) traits are not measured. This equation shows that the classic equation applies if selection directly acts on the measured, phenotypic traits. This is not the case when, for instance, there are unknown internal genetic trade-offs, or unknown common environmental factors affecting both trait and fitness. In such cases, any relationship between phenotypic selection and genetic response is possible. Fortunately, the classical model can be tested by comparing phenotypic and genetic covariances between traits and fitness; an indication that important internal or external traits are missing can thus be obtained. Such an analysis was indeed found in the literature; for selection on fledging weight in Great Tits it yielded valuable extra information.  相似文献   

8.
The mechanisms translating genetic to phenotypic variation determine the distribution of heritable phenotypic variance available to selection. Pleiotropy is an aspect of this structure that limits independent variation of characters. Modularization of pleiotropy has been suggested to promote evolvability by restricting genetic covariance among unrelated characters and reducing constraints due to correlated response. However, modularity may also reduce total genetic variation of characters. We study the properties of genotype-phenotype maps that maximize average conditional evolvability, measured as the amount of unconstrained genetic variation in random directions of phenotypic space. In general, maximal evolvability occurs by maximizing genetic variance and minimizing genetic covariance. This does not necessarily require modularity, only patterns of pleiotropy that cancel on average. The detailed structure of the most evolvable genotype-phenotype maps depends on the distribution of molecular variance. When molecular variance is determined by mutation-selection equilibrium either highly pleiotropic or highly modular genotype-phenotype maps can be optimal, depending on the mutation rate and the relative strengths of stabilizing selection on the characters.  相似文献   

9.
Genetic factors underpinning phenotypic variation are required if natural selection is to result in adaptive evolution. However, evolutionary and behavioural ecologists typically focus on variation among individuals in their average trait values and seek to characterize genetic contributions to this. As a result, less attention has been paid to if and how genes could contribute towards within‐individual variance or trait ‘predictability’. In fact, phenotypic ‘predictability’ can vary among individuals, and emerging evidence from livestock genetics suggests this can be due to genetic factors. Here, we test this empirically using repeated measures of a behavioural stress response trait in a pedigreed population of wild‐type guppies. We ask (a) whether individuals differ in behavioural predictability and (b) whether this variation is heritable and so evolvable under selection. Using statistical methodology from the field of quantitative genetics, we find support for both hypotheses and also show evidence of a genetic correlation structure between the behavioural trait mean and individual predictability. We show that investigating sources of variability in trait predictability is statistically tractable and can yield useful biological interpretation. We conclude that, if widespread, genetic variance for ‘predictability’ will have major implications for the evolutionary causes and consequences of phenotypic variation.  相似文献   

10.
In agrosystems, pests are submitted to strong human-imposed selective pressures to which they sometimes adapt rapidly, either through selection of genotypes resulting from mutation and/or recombination events, or through phenotypic plasticity. Understanding how insects respond to such selective pressures is of great importance for sustainable pest management strategies, such as the use of resistant plants. In this study, we investigated the genetic and phenotypic variability of anholocyclic Aphis gossypii Glover (Hemiptera: Aphididae) strains, in response to the resistance gene Vat that is present in melon crops. Forty-nine aphid colonies were sampled on several melon crops in southern France, genotyped using 15 microsatellite loci, and tested in phenotypic experiments using Vat or non- Vat melons. The level of genetic polymorphism between these colonies was low, as only seven multilocus genotypes were detected. In contrast, the phenotypic variability for life-history and behavioral traits between colonies, including those sharing the same genotype, was unexpectedly high, with a continuum of response to the Vat gene from complete susceptibility to strong virulence. The low genetic polymorphism associated with a strong phenotypic variability highlights the high adaptive potential of A. gossypii and the major role of environmental cues in shaping phenotypic responses of this aphid to pest management strategies.  相似文献   

11.
Parasites are a major evolutionary force, driving adaptive responses in host populations. Although the link between phenotypic response to parasite-mediated natural selection and the underlying genetic architecture often remains obscure, this link is crucial for understanding the evolution of resistance and predicting associated allele frequency changes in the population. To close this gap, we monitored the response to selection during epidemics of a virulent bacterial pathogen, Pasteuria ramosa, in a natural host population of Daphnia magna. Across two epidemics, we observed a strong increase in the proportion of resistant phenotypes as the epidemics progressed. Field and laboratory experiments confirmed that this increase in resistance was caused by selection from the local parasite. Using a genome-wide association study, we built a genetic model in which two genomic regions with dominance and epistasis control resistance polymorphism in the host. We verified this model by selfing host genotypes with different resistance phenotypes and scoring their F1 for segregation of resistance and associated genetic markers. Such epistatic effects with strong fitness consequences in host–parasite coevolution are believed to be crucial in the Red Queen model for the evolution of genetic recombination.  相似文献   

12.
The pattern of genetic variances and covariances among characters, summarized in the additive genetic variance‐covariance matrix, G , determines how a population will respond to linear natural selection. However, G itself also evolves in response to selection. In particular, we expect that, over time, G will evolve correspondence with the pattern of multivariate nonlinear natural selection. In this study, we substitute the phenotypic variance‐covariance matrix ( P ) for G to determine if the pattern of multivariate nonlinear selection in a natural population of Anolis cristatellus, an arboreal lizard from Puerto Rico, has influenced the evolution of genetic variances and covariances in this species. Although results varied among our estimates of P and fitness, and among our analytic techniques, we find significant evidence for congruence between nonlinear selection and P , suggesting that natural selection may have influenced the evolution of genetic constraint in this species.  相似文献   

13.
Long-term selection response could slow down from a decline in genetic variance or in selection differential or both. A model of conflict between truncation and stabilizing selection in infinite population size is analysed in terms of the reduction in selection differential. Under the assumption of a normal phenotypic distribution, the limit to selection is found to be a function of kappa, the intensity of truncation selection, omega 2, a measure of the intensity of stabilizing selection, and sigma 2, the phenotypic variance of the character. The maintenance of genetic variation at this limit is also analyzed in terms of mutation-selection balance by the use of the "House-of-cards" approximation. It is found that truncation selection can substantially reduce the equilibrium genetic variance below that when only stabilizing selection is acting, and the proportional reduction in variance is greatest when the selection is very weak. When truncation selection is strong, any further increase in the strength of selection has little further influence on the variance. It appears that this mutation-selection balance is insufficient to account for the high levels of genetic variation observed in many long-term selection experiments.  相似文献   

14.
Using a phenotypic model, we show that significant heritable variation can be maintained in a population subjected to temporally fluctuating selection if only one sex is subject to selection. In fact, more variation is maintained with sex-limited selection at a given selection intensity than if both sexes are subject to half that selection intensity. This result is commensurate with existing population genetic models. However, genetic models may be inappropriate for sexually selected traits because many of them may be of non-genetic origin, such as maternal effects or – more likely –epigenetic effects. Phenotypic models obviate this problem by accommodating both genetic and epigenetic effects, as well as maternaleffects. Our phenotypic model of sex-limited temporally fluctuating selection shows that substantial heritable variation can be maintained and therebyprovides impetus to develop population epigenetic models.  相似文献   

15.
Gianola D  Heringstad B  Odegaard J 《Genetics》2006,173(4):2247-2255
Finite mixture models are helpful for uncovering heterogeneity due to hidden structure. Quantitative genetics issues of continuous characters having a finite mixture of Gaussian components as statistical distribution are explored in this article. The partition of variance in a mixture, the covariance between relatives under the supposition of an additive genetic model, and the offspring-parent regression are derived. Formulas for assessing the effect of mass selection operating on a mixture are given. Expressions for the genetic and phenotypic correlations between mixture and Gaussian traits and between two mixture traits are presented. It is found that, if there is heterogeneity in a population at the genetic or environmental level, then genetic parameters based on theory treating distributions as homogeneous can lead to misleading interpretations. Some peculiarities of mixture characters are: heritability depends on the mean values of the component distributions, the offspring-parent regression is nonlinear, and genetic or phenotypic correlations cannot be interpreted devoid of the mixture proportions and of the parameters of the distributions mixed.  相似文献   

16.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.  相似文献   

17.
This study evaluated how natural selection act upon two proposed alternatives of defence (growth and resistance) against natural enemies in a common garden experiment using genetic material (full-sibs) from three populations of the annual plant Datura stramonium. Genetic and phenotypic correlations were used to search for a negative association between both alternatives of defence. Finally, the presence/absence of natural enemies was manipulated to evaluate the selective value of growth as a response against herbivory. Results indicated the presence of genetic variation for growth and resistance (1--relative damage), whereas only population differentiation for resistance was detected. No correlation between growth and resistance was detected either at the phenotypic or the genetic level. Selection analysis revealed the presence of equal fitness benefits of growth and resistance among populations. The presence/absence of natural herbivores revealed that herbivory did not alter the pattern of selection on growth. The results indicate that both strategies of defence can evolve simultaneously within populations of D. stramonium.  相似文献   

18.
Recent studies in plant populations have found that environmental heterogeneity and phenotypic selection vary at local spatial scales. In this study, I ask if there is evolutionary change in response to environmental heterogeneity and, if so, whether the response occurs for characters or character plasticities. I used vegetative clones of Mimulus guttatus to create replicate populations of 75 genotypes. These populations were planted into the natural habitat where they differed in mean growth, flowering phenology, and life span. This phenotypic variation was used to define selective environments. There was variation in fitness (flower production) among genotypes across all planting sites and in genotype response to the selective environment. Offspring from each site were grown in the greenhouse in two water treatments. Because each population initially had the same genetic composition, variation in the progeny between selective environments reveals either evolutionary change in response to environmental heterogeneity or environmental maternal effects. Plants from experimental sites that flowered earlier, had shorter life spans and were less productive, produced offspring that had more flowers, on average, and were less plastic in vegetative allocation than offspring of longer-lived plants from high-productivity areas. However, environmental maternal effects masked phenotypic differences in flower production. Therefore, although there was evidence of genetic differentiation in both life-history characters and their plasticities in response to small-scale environmental heterogeneity, environmental maternal effects may slow evolutionary change. Response to local-scale selective regimes suggests that environmental heterogeneity and local variation in phenotypic selection may act to maintain genetic variation.  相似文献   

19.
Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple‐herbivore communities—particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic‐selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one‐third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance.  相似文献   

20.
Bijma P 《Genetics》2011,189(4):1347-1359
Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population's intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号