首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms.  相似文献   

2.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair in cells lacking PARP-1 in order to elucidate whether their augmented sensitivity to DNA damaging agents is due to an impairment of the base excision repair pathway. Extracts prepared from wild-type cells or cells lacking PARP-1 were similar in their ability to repair plasmid DNA damaged by either X-rays (single-strand DNA breaks) or by N-methyl-N′-nitro-N-nitrosoguanidine (methylated bases). In addition, we demonstrated in vivo that PARP-1-deficient cells treated with N-methyl-N′-nitro-N-nitrosoguanidine repaired their genomic DNA as efficiently as wild-type cells. Therefore, we conclude that cells lacking PARP-1 have a normal capacity to repair single-strand DNA breaks inflicted by X-irradiation or breaks formed during the repair of modified bases. We propose that the hypersensitivity of PARP-1 null mutant cells to γ-irradiation and alkylating agents is not directly due to a defect in DNA repair itself, but rather results from greatly reduced poly(ADP-ribose) formation during base excision repair in these cells.  相似文献   

3.
The first step of homology-dependent DNA double-strand break (DSB) repair is the 5′ strand-specific processing of DNA ends to generate 3′ single-strand tails. Despite extensive effort, the nuclease(s) that is directly responsible for the resection of 5′ strands in eukaryotic cells remains elusive. Using nucleoplasmic extracts (NPE) derived from the eggs of Xenopus laevis as the model system, we have found that DNA processing consists of at least two steps: an ATP-dependent unwinding of ends and an ATP-independent 5′3′ degradation of single-strand tails. The unwinding step is catalyzed by DNA helicases, the major one of which is the Xenopus Werner syndrome protein (xWRN), a member of the RecQ helicase family. In this study, we report the purification and identification of the Xenopus DNA2 (xDNA2) as one of the nucleases responsible for the 5′3′ degradation of single-strand tails. Immunodepletion of xDNA2 resulted in a significant reduction in end processing and homology-dependent DSB repair. These results provide strong evidence that xDNA2 is a major nuclease for the resection of DNA ends for homology-dependent DSB repair in eukaryotes.  相似文献   

4.
The recA mutants of Escherichia coli exhibit an abnormal DNA degradation that starts at sites of double-strand DNA breaks (DSBs), and is mediated by RecBCD exonuclease (ExoV). This “reckless” DNA degradation occurs spontaneously in exponentially growing recA cells, and is stimulated by DNA-damaging agents. We have previously found that the xonA and sbcD mutations, which inactivate exonuclease I (ExoI) and SbcCD nuclease, respectively, markedly suppress “reckless” DNA degradation in UV-irradiated recA cells. In the present work, we show that inactivation of exonuclease VII (ExoVII) by an xseA mutation contributes to attenuation of DNA degradation in UV-irradiated recA mutants. The xseA mutation itself has only a weak effect, however, it acts synergistically with the xonA or sbcD mutations in suppressing “reckless” DNA degradation. The quadruple xseA xonA sbcD recA mutants show no sign of DNA degradation during post-irradiation incubation, suggesting that ExoVII, together with ExoI and SbcCD, plays a crucial role in regulating RecBCD-catalyzed chromosome degradation. We propose that these nucleases act on DSBs to create blunt DNA ends, the preferred substrates for the RecBCD enzyme. In addition, our results show that in UV-irradiated recF recA+ cells, the xseA, xonA, and sbcD mutations do not affect RecBCD-mediated DNA repair, suggesting that ExoVII, ExoI and SbcCD nucleases are not essential for the initial targeting of RecBCD to DSBs. It is possible that the DNA-blunting activity provided by ExoVII, ExoI and SbcCD is required for an exchange of RecBCD molecules on dsDNA ends during ongoing “reckless” DNA degradation.  相似文献   

5.
An increased sensitivity to inactivation was observed when ultraviolet light-irradiated Acholeplasma laidlawiiAn increase sensitivity to inactivation was observed when ultraviolet light-irradiated Acholeplasma laidlawii cells were plated on medium containing either acriflavine or chloramphenicol. Chloramphenicol reduced liquid holding recovery (dark repair) to about 10 percent of that in untreated irradiated cells. In acriflavine treated cells no dark repair could be observed and there was a progressive degradation of cell DNA during holding. While the primary effect of acriflavine may be to inhibit excision repair, since ultraviolet-irradiated Mycoplasma gallisepticum (cells which lack an excision repair mechanism) show a slight increase in inactivation when plated on medium containing acriflavine, the dye must also have some other effects on ultraviolet repair processes. Acriflavine treatment of A. laidlawii cells before ultraviolet irradiation has a protective effect, as seen by an increased cell survival.  相似文献   

6.
7.
The E3 ubiquitin ligase HUWE1/Mule/ARF-BP1 plays an important role in integrating/coordinating diverse cellular processes such as DNA damage repair and apoptosis. A previous study has shown that HUWE1 is required for the early step of DNA damage-induced apoptosis, by targeting MCL-1 for proteasomal degradation. However, HUWE1 is subsequently inactivated, promoting cell survival and the subsequent DNA damage repair process. The mechanism underlying its regulation during this process remains largely undefined. Here, we show that the Cullin4B-RING E3 ligase (CRL4B) is required for proteasomal degradation of HUWE1 in response to DNA damage. CUL4B is activated in a NEDD8-dependent manner, and ubiquitinates HUWE1 in vitro and in vivo. The depletion of CUL4B stabilizes HUWE1, which in turn accelerates the degradation of MCL-1, leading to increased induction of apoptosis. Accordingly, cells deficient in CUL4B showed increased sensitivity to DNA damage reagents. More importantly, upon CUL4B depletion, these phenotypes can be rescued through simultaneous depletion of HUWE1, consistent with the role of CUL4B in regulating HUWE1. Collectively, these results identify CRL4B as an essential E3 ligase in targeting the proteasomal degradation of HUWE1 in response to DNA damage, and provide a potential strategy for cancer therapy by targeting HUWE1 and the CUL4B E3 ligase.  相似文献   

8.
9.
Summary: The repair of DNA double-strand breaks (DSBs) is essential for cell viability and important for homologous genetic recombination. In enteric bacteria such as Escherichia coli, the major pathway of DSB repair requires the RecBCD enzyme, a complex helicase-nuclease regulated by a simple unique DNA sequence called Chi. How Chi regulates RecBCD has been extensively studied by both genetics and biochemistry, and two contrasting mechanisms to generate a recombinogenic single-stranded DNA tail have been proposed: the nicking of one DNA strand at Chi versus the switching of degradation from one strand to the other at Chi. Which of these reactions occurs in cells has remained unproven because of the inability to detect intracellular DNA intermediates in bacterial recombination and DNA break repair. Here, I discuss evidence from a combination of genetics and biochemistry indicating that nicking at Chi is the intracellular (in vivo) reaction. This example illustrates the need for both types of analysis (i.e., molecular biology) to uncover the mechanism and control of complex processes in living cells.  相似文献   

10.
Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species.  相似文献   

11.
Deubiquitinating enzymes (DUBs) function in a variety of cellular processes by removing ubiquitin moieties from substrates, but their role in DNA repair has not been elucidated. Yeast Rad4-Rad23 heterodimer is responsible for recognizing DNA damage in nucleotide excision repair (NER). Rad4 binds to UV damage directly while Rad23 stabilizes Rad4 from proteasomal degradation. Here, we show that disruption of yeast deubiquitinase UBP3 leads to enhanced UV resistance, increased repair of UV damage and Rad4 levels in rad23Δ cells, and elevated Rad4 stability. A catalytically inactive Ubp3 (Ubp3-C469A), however, is unable to affect NER or Rad4. Consistent with its role in down-regulating Rad4, Ubp3 physically interacts with Rad4 and the proteasome, both in vivo and in vitro, suggesting that Ubp3 associates with the proteasome to facilitate Rad4 degradation and thus suppresses NER.  相似文献   

12.

Background

Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells.

Methodology/Principal Findings

Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5′ next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts.

Conclusions/Significance

This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.  相似文献   

13.
Previous studies have shown that the v gene of bacteriophage T4 codes for an endonuclease that specifically attacks pyrimidine dimer sites in UV-irradiated DNA. The present studies have examined the role of this endonuclease in the repair of DNA damaged by nitrogen mustard, N-methyl-N′-nitro-N-nitrosoguanidine (NTG), mitomycin C and 4-nitroquinoline-N-oxide. The observation by Harm that the v gene product of phage T4 facilitates repair of UV damage to the host DNA of excision-repair defective strains enabled us to test whether it does the same with other cellular DNA lesions. It was shown that infection of UV-irradiated E. coliBs−1 with UV-inactivated phage T4v+ resulted in rescue of a certain fraction of the host cells. However no v gene mediated repair E. coli Bs−1 was observed following treatment with the chemical agents mentioned. Furthermore, though phage T4v1 is more sensitive to UV-irradiation than phage T4, there was no observed difference in the sensitivity of these phages to nitrogen mustard or NTG. On the basis of these observations it was concluded that the v gene coded endonuclease of T4 is specific for the excision repair of pyrimidine dimers and does not participate in the repair of chemically damaged DNA. In vitro enzymatic degradation of DNA alkylated with nitrogen mustard was observed, but it is probable that this degradation is not part of a repair reaction in vivo.  相似文献   

14.
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2Wt and DDB2PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity.  相似文献   

15.
Yeung M  Durocher D 《DNA Repair》2011,10(12):1213-1222
Following DNA repair, checkpoint signalling must be abated to resume cell cycling in a phenomenon known as checkpoint recovery. Although a number of genes have been implicated in the recovery process, it is still unknown whether checkpoint recovery is caused by a signalling network activated by DNA repair or whether it is the result of the loss of DNA structures that elicit the checkpoint. Here we show that checkpoint recovery can be uncoupled from bulk chromosome DNA repair if single-stranded (ss) DNA persists. This situation occurs in cells that are deficient in the Srs2 helicase, a protein that antagonizes Rad51. We report that srs2Δ cells fail to eliminate Ddc2 and RPA subnuclear foci following bulk chromosome repair due to the persistence of ssDNA. In contrast to cells with DNA double-strand breaks that remain unrepaired, srs2Δ cells remove the 9-1-1 checkpoint clamp from chromatin after repair. However, despite the loss of the 9-1-1 clamp, Dpb11 remains associated with chromatin to promote checkpoint activity. Our work indicates that Srs2 promotes checkpoint recovery by removing Rad51 after DNA repair. A failure to remove Rad51 causes persistence of ssDNA and the checkpoint signal. Therefore, we conclude that cells initiate recovery when the DNA structures that elicit the checkpoint are eliminated.  相似文献   

16.
Differential recruitment of DNA Ligase I and III to DNA repair sites   总被引:6,自引:3,他引:3  
DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair.  相似文献   

17.
Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson’s disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.  相似文献   

18.
19.
Many mutagens and carcinogens damage DNA and elicit repair synthesis in cells. In the present study we report that alkylation of the DNA of Escherichia coli that have been made permeable to nucleotides by toluene treatment results in the expression of a DNA polymerase I-directed repair synthesis. The advantage of the system described here is that it permits measurement of only DNA polymerase I-directed repair synthesis and serves as a simple, rapid method for determining the ability of a given chemical to elicit “excision-repair” in bacteria.DNA ligation is intentionally prevented in our system by addition of the inhibitor nicotinamide mononucleotide. In the absence of DNA ligase activity, nick translation is extensive and an “exaggerated” repair synthesis occurs. This amplification of repair synthesis is unique for DNA polymerase I since it is not observed in mutant cells deficient in this polymerase. DNA ligase apparently controls the extent of nucleotide replacement by this repair enzyme through its ability to rejoin “nicks” thereby terminating the DNA elongation process.The nitrosoamides N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea, as well as the nitrosoamidines N-methyl-N′-nitro-N-nitrosoguanidine and N-ethyl-N′-nitro-N-nitrosoguanidine, elicit DNA polymerase I-directed repair synthesis. Methyl methanesulphonate is especially potent in this regard, while its ethyl derivative, ethyl methanesulphonate, is a poor inducer of DNA polymerase I activity in permeabilized cells.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with diverse biological functions in human cells. In bacteria, moonlighting GAPDH functions have only been described for the secreted protein in pathogens or probiotics. At the intracellular level, we previously reported the interaction of Escherichia coli GAPDH with phosphoglycolate phosphatase, a protein involved in the metabolism of the DNA repair product 2-phosphoglycolate, thus suggesting a putative role of GAPDH in DNA repair processes. Here, we provide evidence that GAPDH is required for the efficient repair of DNA lesions in E. coli. We show that GAPDH-deficient cells are more sensitive to bleomycin or methyl methanesulfonate. In cells challenged with these genotoxic agents, GAPDH deficiency results in reduced cell viability and filamentous growth. In addition, the gapA knockout mutant accumulates a higher number of spontaneous abasic sites and displays higher spontaneous mutation frequencies than the parental strain. Pull-down experiments in different genetic backgrounds show interaction between GAPDH and enzymes of the base excision repair pathway, namely the AP-endonuclease Endo IV and uracil DNA glycosylase. This finding suggests that GAPDH is a component of a protein complex dedicated to the maintenance of genomic DNA integrity. Our results also show interaction of GAPDH with the single-stranded DNA binding protein. This interaction may recruit GAPDH to the repair sites and implicates GAPDH in DNA repair pathways activated by profuse DNA damage, such as homologous recombination or the SOS response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号