首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differentiation of normal and mutant (aP/aP) Xenopus laevis melanophores in chimerae was analyzed to determine the tissues affected by this mutation. Normal melanophores in mutant host tissue differentiate in mutant host tissue prior to those of the mutant host. These normal melanophores were initially normal in appearance, but, after the differentiation of the mutant host's melanophores, they became indistinguishable from their host's melanophores. These normal melanophores persist in more than normally punctate form after the disappearance of the mutant host's melanophores in late larval life. Parabiosis and head transplants between mutant and normal embryos did not affect the character of either type of melanophore developing in tissue of its own genotype, indicating that the hormonal control of melanophore differentiation is not affected by the mutation. Therefore, the periodic albino mutant affects the capacity of the mutant melanophore to differentiate and the ability of the mutant skin to support normal melanophore differentiation.  相似文献   

2.
Stage 14 (Gallien and Durocher, 1957)Pleurodeles waltlii embryos were treated with α- or β-melanophore-stimulating hormone (MSH), ACTH, dbc-AMP, c-AMP plus theophylline, theophylline, 5′-AMP, or 2′,3′-AMP. The development of melanophores was accelerated (appearing two stages earlier than in control embryos) by α- or β-MSH, ACTH, dbc-AMP, c-AMP plus theophylline, or theophylline alone. By the time embryos developed to stage 28, the control and treated embryos were indistinguishable in the number, distribution, and general morphology of their melanophores, suggesting these agents do not induce melanophore formation or mitosis. Cyclic AMP alone, 5′-AMP or 2′,3′-AMP were ineffective. Accelerated cytodifferentiation apparently requires preinduction by the invaginating chordo-mesoderm during stages 13 and 14 as presumptive neural plate explants cultured before chordo-mesoderm induction (stage 8) failed to produce melanophores with or without α-MSH or dbc-AMP. Explants from stage 14 embryos treated with α-MSH or dbc-AMP developed the same number of melanophores at the approximate time that treated whole embryos developed melanophores. Whole embryo experiments involving the faster developing embryos of Xenopus laevis were similar to those described for P. waltlii.  相似文献   

3.
The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858) larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA). The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.  相似文献   

4.
A photometrical method has been developed that allows assessment of subcellular pigment migration in melanophores of the fish cockoo wrasse (Labrus ossifagus L.). The pigment migration was studied with local light spot transmission measurements. Depending on where the light beam is placed on the melanophores it is possible to study events within an area of approximately 75 μm2. Measuring pigment translocation in different parts of a melanophore gives new possibilities to study how cell membrane receptor-mediated signals are spread within a single cell, which will increase our understanding of how receptor activating drugs exert their cellular effect. The technique can be used in pharmacological and biophysical studies and in biosensors, pharmaceutical screens, environmental detectors, etc. The method clearly has the ability to study local and small changes in light transmission due to displacement of melanophore pigment granules. Since one melanophore on the tip of an optical fibre would be enough to obtain a measurable effect, the presented technique provides the basis for future development of biosensors small enough for in vivo applications, e.g., to monitor the catecholamine levels of circulating blood.  相似文献   

5.
In a natural pond among usual black larvae of the common toad (Bufo bufo L.), a few unusual individuals of red-olive coloring were found out. In both morphs we investigated the melanophores of skin using different methods. The ESR-spectrometric analysis has shown the absence of distinctions between morphs by the amount of melanin. Analysis of total preparations of skin has shown the presence of various kinds of melanophore cells both in the derma and in the epidermis. Among typical melanophores, essentially differing cells appeared (atypical cells). In black morph tadpoles, the number of all kinds of melanophores is significantly greater than in red-olive morphs. It is shown that dark coloring is connected with a considerable number of atypical cells in the epidermis imposed on a dense layer of typical dermal melanophores with dispersed melanin.  相似文献   

6.
Pigmentation patterns in vertebrates have become an important model for those interested in mechanisms of pattern determination. I present detailed information on the development of melanophore patterns in the zebrafish, Danio rerio, five close relatives of that species, and an outgroup. The comparison of the ontogeny of melanophore patterns in this group is an important first step towards understanding the developmental basis of the interspecific variation. Pigment patterns in this group range from no distinct patterning at all to stripes of differing numbers and widths to reticulated stripes. Species examined form identical larval patterns and follow a common sequence of events from which different elements are eliminated or altered to produce the variety of patterns seen in the group. As flexion is completed, melanophores move from larval positions onto the flanks of the fish. In D. rerio, D. rerio ‘leo,’ D. kerri, and D. malabaricus, xanthophores become established on the body of the fish as the melanophores move; erythrophores become established on the flanks of D. albolineatus and D. sp. cf. aequipinnatus. An increase in melanophore number, begun at this time, continues at a higher rate in D. rerio, D. kerri, D. sp. cf. aequipinnatus and Tanichthys albonubes than in the other three species. This results in a greater number of melanophores on adults in those species with a higher rate of melanophore increase. No distinct pattern forms, except on the caudal peduncle, in D. albolineatus. In all other Danio species, melanophore stripes form first below then above the horizontal myoseptum. Additional stripes are added first below then above these initial two stripes. D. kerri develops fewer, wider melanophore stripes than D. rerio. After initial stripe formation, D. malabaricus and D. sp. cf. aequipinnatus both developed vertical pattern elements and reticulations in the melanophore pattern. Differences in patterns between species are similar in several cases to described mutants of the zebrafish, suggesting that some aspects of interspecific pigmentation pattern variation may be under relatively simple genetic control. J. Morphol. 241:83–105, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Summary The purpose of the present investigation was to provide and apply a methodological manual with which the distribution, patterning and relationship of melanophores and xanthophores can be analyzed during early amphibian development. For demonstration of the methods, which include ultrastructural, histochemical and biochemical approaches, Triturus alpestris and Ambystoma mexicanum (axolotl) embryos are used. These two species differ conspicuously in their larval pigment patterns, showing alternating melanophore bands in horizontal (T. alpestris) and vertical (axolotl) arrangements. With transmission- and scanning electron microscopy melanophores and xanthophores were distinguished by their different pigment organelles and surface structures. The presence of phenol oxidase (tyrosinase) was used to reveal externally invisible or faintly visible melanophores by applying an excess of 3,4 dihydroxy-phenylalanine (dopa). Xanthophores were made visible in fixed and living embryos by demonstrating their pterin fluorescence. In addition, pterins were analyzed by HPLC in embryos before and after pigmentation was visible.Abbreviations DOPA dihydroxy-phenylalanine - FCS fetal calf serum - FIF formaldehyde-induced fluorescence - FITC fluorescein isothiocyanate - HPLC high performance liquid chromatography Dedicated to the memory of Dr. Michael Claviez  相似文献   

8.
1. In Fundulus heteroclitus the dispersing melanophore nerve fibers have a relatively high threshold for faradic stimulation and a low one for stimulation by cutting. When they are protected from the competing action of the concentrating fibers, they show through the responses of their melanophores well marked antidromic activities which can also be seen to a slight degree even where the concentrating fibers are active. 2. The concentrating melanophore nerve fibers in this fish have a relatively low threshold for faradic stimulation and a high one for stimulation by cutting. They also exhibit clear antidromic responses as shown by their associated melanophores.  相似文献   

9.
Pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores and/or iridophores. Cell signaling mechanisms related to the development of pigmentation remain obscure. In order to examine the mechanisms involved in pigment cell signaling, we treated zebrafish embryos with various activators and inhibitors of signaling pathways. Among those chemicals tested, LiCl and LiCl/forskolin had a stimulatory effect on pigmentation, most notable in the melanophore population. We propose that the inositol phosphate (IP) pathway, is involved in pigment pattern formation in zebrafish through its involvement in the: (1) differentiation/proliferation of melanophores; (2) dispersion of melanosomes; and/or (3) synthesis/deposition of melanin. To discern at what level pigmentation was being effected we: (1) counted the number of melanophores in control and experimental animals 5 days after treatment; (2) measured tyrosinase activity and melanin content; and (3) employed immunoblotting techniques with anti-tyrosine-related protein-2 and anti-melanocyte-specific gene-1 as melanophore-specific markers. Although gross pigmentation increased dramatically in LiCl- and LiCl/forskolin treated embryos, the effect on pigmentation was not due to an increase in the proliferation of melanophores, but was possibly through an increase in melanin synthesis and/or deposition. Collectively, results from these studies suggest the involvement of an IP-signaling pathway in the stimulation of pigmentation in embryonic zebrafish through the synthesis/deposition of melanin within the neural crest-derived melanophores.  相似文献   

10.
Summary The change in distribution of melanophores from stage 28+ (uniform melanophore pattern) to stage 34 (banded melanophore pattern) and the participation of xanthophores in these changes has been investigated inTriturus alpestris embryos by studying the social behaviour of single cells. While melanophores are clearly visible from outside the embryo at stage 28+, xanthophores cannot be recognized from the outside until after stage 34. In ultrathin sections of stage 34 embryos, xanthophores are observed alternating with melanophores in a zonal distribution (Epperlein 1982). Using detached pieces of dorsolateral trunk skin, which retain their chromatophores after detachment, the entire distribution of melanophores and xanthophores can be visualized in a scanning electron microscope (SEM). In ambiguous cases (early stages), cells were reprocessed for transmission electron microscopy (TEM) and the presence of the characteristic pigment organelles was assessed. In addition, xanthophores were specifically identified by pteridine fluorescence with dilute ammonia. Pteridines were also identified chromatographically in skin homogenates. The combination of these methods allowed precise identification and quantitative determination of melanophores and xanthophores. Both cell types were present as codistributed, biochemically differentiated cells at stage 28+. Changes in the pattern up to stage 34 were due to the rearrangement at the epidermal-mesodermal interface of a relatively fixed number of melanophores which became preferentially localised at the dorsal somite edge and at the lateral plate mesoderm, and to the distribution of an increasing number of xanthophores to subepidermal locations in the dorsal fin and between the melanophore bands. Concomitant was an increase in the thickness of the epidermal basement membrane and a change in shape of chromatophores from elongate via stellate to rosette shaped, which may be correlated with a shift from migratory to sessile phases.  相似文献   

11.
The pattern of adrenergic innervation to scale chromatophores of the wild-type medaka, Oryzias latipes, was examined by autoradiography with 3H-norepinephrine and found for the first time to be changed reversibly during prolonged background adaptation. In scales of the medaka, which was adapted to a black background for 10-15 days, a great number of melanophores and dense networks of varicose fibers were observed: many fibers built up a radial plexus around each melanophore. However, the dense distribution of varicose fibers disappeared with a decrease in the number of melanophores during long-term adaptation to a white background. As to the changes in the innervation pattern to amelanotic melanophores of the medaka, orange-red variety, a similar result was obtained. Although the increase in the number of leucophores was observed in the medaka adapted to a white background, no exact plexuses of labeled fibers were confirmed around leucophores. From these results, it is concluded that the density of chromatic nerve fibers changes in parallel with the variation of the number of melanophores during prolonged background adaptation.  相似文献   

12.
Takao Kajishima 《Genetics》1977,86(1):161-174
The genotypes of three color mutants in goldfish: a depigmentation character of larval melanophores, albinism and a recessive-transparent character, were analyzed by crossing experiments. The depigmentation character in the common goldfish is controlled by two dominant multiple genes, Dp 1 and Dp2, and only fish with double recessive alleles dp1dp1 dp2dp2 can retain larval melanophores throughout life. Albinism is also controlled by double autosomal genes, p and c. The genotype of an albino fish is represented by pp cc; the non-albino fish is PP CC. Fish with either a pp CC or pp Cc genotype are albino when scored at the time of melanosome differentiation in the pigment retina, but after the time of skin melanophore differentiation, they change to the nonalbino type under the control of the C gene. The recessive-transparent character is controlled by a single autosomal gene, g. The mechanisms of gene expression of these characters were proposed as a result of observation and/or experimental data on the differentiation processes of their phenotypes, and the genotypes of these color mutant goldfish were considered in relation to the "gene duplication hypothesis in the Cyprinidae."  相似文献   

13.
The distribution of melanophores and xanthopores in developing tailbud stages of Triturus alpestris was investigated. In stage 27 embryos (curved tailbuds), melanophores are distributed evenly but sparsely over the entire dorsolateral trunk. With progressive development melanophores arrange themselves into compact dorsal and lateral bands present in stage 34 embryos (9 to 10-mm-long larvae). On the inner surface of detached pieces of skin from early tailbuds which were investigated in the scanning electron microscope xanthophores were discovered in addition to and mixed with melanophores. Unlike melanophores they are invisible from outside. Later in development they occupy the zone between the melanophore bands and also the dorsal fin. Thus, formation of pigment cell patterns in Triturus embryos is a process which seems to depend on the differential sorting out of two populations of neural crest-derived chromatophore cell types.  相似文献   

14.
Chromatophores show significant changes during healing of skin wounds in Labeo rohita (Common Name - Rohu). Wound area can be divided into regions I, II and III. After infliction of wound, skin colour becomes significantly dark by 2 h that is gradually restored by 2 d. In regions II and III at 5 min, epidermal melanophores appear with beaded dendrites. In these regions at 2 h and in region I at 6 h, epidermal melanophores appear small, rounded or irregular shaped having dendritic processes with aggregated melanosomes. Subsequently, melanophores appear having elongated dendrites with dispersed or aggregated melanosomes. At 24 h, clusters of pigmented bodies appear in regions I and II. These bodies increase up to 2 d, and then diminish gradually and disappear by 8 d. Changes in dermal melanophores in region II at 5 min indicate the onset of degeneration. Degenerating melanophores increase up to 12 h, then gradually decline, and disappear by 4 d. Simultaneously, stellate melanophore reappear, gradually increase and appear like control by 8 d. Dermal melanophores in region III at different intervals appear stellate. In region I stellate dermal melanophores appear at 4 d. Stellate melanophores in all regions show different distribution of dispersed or aggregated melanosomes. With the appearance of dermal melanophores, highly refractive, crystalline structures, possibly the refractive platelets of the iridophores, are visualized around them. At subsequent intervals, these are frequently observed. This study provides interesting insights in injury induced changes in chromatophores in fish. The findings could be considered useful in perception of intriguing features in the development of pigment research in future.  相似文献   

15.
The gynogenetic livebearing Amazon molly (Poecilia formosa) is a sexual parasite that exploits males of closely related species for sperm. This is needed as physiological stimulus for embryo development; however, none of the male’s genes are normally incorporated into the genome of the gynogenetic offspring. Mostly diploid individuals were reported from the natural habitats in North-Eastern Mexico and South-Eastern Texas but stable populations of triploids have been reported from the Río Soto la Marina drainage and in the Río Guayalejo in North-Eastern Mexico. Triploidy is the result of defects in the mechanisms that normally clear the host sperm from the ameiotic diploid egg. Triploids also reproduce gynogenetically and their frequencies fluctuate markedly between years, seasons, and localities. To understand the dynamics of this mating system, it is important to understand the relative reproductive success of triploids and diploids. We hypothesize that triploids should have a selective advantage over diploids due to heterosis and/or gene redundancy based on the additional genetic material from the sexual host. However, clonal competition experiments revealed a clear reproductive advantage of diploids competing with triploids. This result contradicts not only our hypothesis but also the stable co-existence of diploids and triploids in natural habitats. Frequency dependent selection, niche partitioning and environmental heterogeneity are discussed as possible explanations.  相似文献   

16.
The integumental melanophores of Latimeria chalumnae were studied by light and electron microscopy. The epidermal melanophore located in the mid-epidermis consists of a round perikaryon with long slender dendrites extending into epidermal cells and intercellular spaces. The dermal melanophores occur in the loose dermal matrix underlying a relatively thick layer of collagen fibers. The dermal melanophores are usually flattened and their dendrites lie parallel to the collagen layer. Both epidermal and dermal melanophores contain oval, electron-opaque melanosomes, large mitochondria, agranular vacuoles of endoplasmic reticulum and microtubules. Microfilaments and RNP particles are less conspicuous. While the peripheral cytoplasm of both dermal and epidermal melanophores is filled with a large number of melanosomes, the perinuclear cytoplasm of many dermal melanophores is occupied by premelanosomes in various stages of differentiation, and that of the epidermal melanophore contains numerous large vacuoles. Despite the scarcity of epidermal melanophores, the epidermal melanin unit is present in the form of melanosome complexes. In addition, the melanophores of Latimeria possess the basic characteristics common to other vertebrates, but they more closely resemble those of lungfish and other aquatic vertebrates.  相似文献   

17.
Selection of oviposition sites in insects represents an important part of their ecological adaptation. In Drosophila fruit flies, adult preference for a particular oviposition site determines larval food, affecting fitness throughout the entire life cycle. Two odorant-binding proteins (OBPs) OBP57d and OBP57e were identified to be involved in the evolution of specific preference for the toxic plant Morinda citrifolia L. in D. sechellia Tsacas &; Bächli. D. melanogaster Meigen mutants for Obp57d and Obp57e showed enhanced preference for octanoic acid, but still not as much as D. sechellia does, indicating that other genes are also involved in the behavioral evolution of D. sechellia. Here, by using an improved method for behavioral assay, we found that the ablation of antenna enhanced the preference for octanoic acid in the Obp57d and Obp57e mutants to a level comparable with D. sechellia, suggesting that both olfactory and gustatory sensations are involved in oviposition site selection in response to octanoic acid. Behavioral analysis of gene-knockout strains revealed that Odorant receptor co-receptor (Orco) has little contribution compared with the effect of antennal ablation. These data suggest that in addition to Obp57d and Obp57e, the evolution of D. sechellia involves genetic changes in olfactory genes that function independently from Orco.  相似文献   

18.
Summary The subepidermal distribution of xanthophores and melanophores is investigated in embryos ofTriturus alpestris with a uniform (stage 28+) and a banded melanophore pattern (stage 35/36). In ultrathin head and trunk sections from stage 35/36 embryos which externally show longitudinal dorsal and lateral melanophore bands in the trunk and less compact continuations of the dorsal bands in the head, xanthophores were discovered in addition to melanophores. Melanophores contain melanosomes while xanthophores which are not externally visible, are recognized by their pterinosomes. Both chromatophore cell types are mutually exclusively distributed on the epidermal basement membrane (bm). Mesenchymal cells seemed not to be able to replace them, except on the bm of the corneal epithelium where there were only mesenchymal cells. In head and trunk sections from stage 28+ embryos which externally show a distribution of uniformly scattered melanophores on the dorsolateral halves, melanophores were found on the dorsolateral neural crest migration route. No epidermal bm was present and xanthophores were undetectable. In ventrolateral and ventral portions of embryos of both stages no chromatophores occurred. This investigation defines the histological localization of melanophores and xanthophores in embryos with a typical uniform and banded melanophore arrangement; a subsequent study analyzes when xanthophores appear and how they arrange with melanophores in alternating zones.  相似文献   

19.
Winter flounder, Pleuronectes americanus, adapting to black or white backgrounds display significant increase and decline respectively in the number of visible epidermal melanophores over periods up to 8 weeks or longer. This contrasts with a stability in the number of visible dermal melanophores during the same periods of exposure to each background. Flounders treated with -melanophore stimulating hormone exhibited an enhanced rate of increase in number of visible epidermal melanophores when the background was changed from white to black, whereas white-adapted flounder treated with -melanophore stimulating hormone without background change did not manifest any such increase in number of epidermal melanophores. Flounder treated with -melanophore stimulating hormone after transfer from black to white displayed a similar initial decline in visible epidermal melanophore number as in control fish, but the final decline was significantly attenuated. Thus -melanophore stimulating hormone, which has no apparent influence on melanosome dispersion in this species, may have a limited morphological melanophore regulatory role which is discussed in relation to possible antagonistic and synergistic factors that could influence melanogenesis and visible melanophore numbers.Abbreviations DMI dermal melanophore index - EMI epidermal melanophore index - LSD least significant difference - MCH melanosome concentrating hormone - MIF melanogenesis inhibiting factor - MSF melanogenesis stimulating factor - MSH melanophore stimulating hormone  相似文献   

20.
Dragonet fishes (Callionymidae) are benthic inhabitants of shallow waters, even in tidal pools, down to depths below 900 m in all subtropical, tropical and temperate oceans. The family comprises 200 species in 20 genera worldwide, of which 18 species in 6 genera occur in Korea. Classification within the family Callionymidae has been controversial because of the differing proposals of Fricke and Nakabo (Fishes of Japan with pictorial keys to the species, 1983). For example, Fricke suggested genus Repomucenus and Bathycallionymus, whose genera contains most callionymid species in Korean waters, as junior synonym of genus Callionymus while Nakabo (Fishes of Japan with pictorial keys to the species, 1983) suggested as valid. In such cases, when classifications of adults have taxonomic contention, examination of larval characters may prove informative. Therefore, in this study, the authors conducted comprehensive molecular and morphological analyses on larvae and juveniles of five species in the genus Repomucenus and discussed their taxonomic status within the family Callionymidae. Larval and juvenile callionymids show high morphological similarities during their ontogenetic development. Nonetheless, the following morphological differences were observed in melanophore distribution and preopercular spine development: (a) stellate or punctate melanophores in Bathycallionymus kaianus vs. branched melanophores in genus Repomucenus, (b) melanophores on the abdominal cavity gradually disappearing in B. kaianus vs. gradually becoming prominent in Repomucenus and (c) preopercular spine development giving rise to one perpendicular spine in B. kaianus vs. two or three spines in Repomucenus. Molecular analysis based on 16S ribosomal RNA showed similar results to the morphological analysis. Genera Bathycallionymus and Repomucenus showed significant genetic distance (d = 0.113–0.120); moreover, genus Callionymus, which was suggested as a senior synonym of genus Bathycallionymus and Repomucenus by Fricke (Journal of Natural History, 2014, 48, 2419–2448), also showed considerable difference (d = 0.226–0.246). In the present study, the monophyly of genus Repomucenus seemed well supported by the results of morphological and molecular analyses of larval stage Callionymidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号