首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute rates of synthesis of specific ribosomal proteins have been determined during growth and meiotic maturation of mouse oocytes, as well as during early embryogenesis in the mouse. These measurements were made possible by the development of a high-resolution twodimensional gel electrophoresis procedure capable of resolving basic proteins with isoelectric points between 9.1 and 10.2. Mouse ribosomal proteins were separated on such gels and observed rates of incorporation of [35S]methionine into each of 12 representative ribosomal proteins were converted into absolute rates of synthesis (femtograms or moles synthesized/hour/oocyte or embryo) by using previously determined values for the absolute rates of total protein synthesis in mouse oocytes and embryos (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978,Proc. Nat. Acad. Sci. USA,75, 4160;R. M. Schultz, G. E. Letourneau, and P. M. Wassarman, 1979,Develop. Biol.,68, 341–359). Ribosomal proteins were synthesized at all stages of oogenesis and early embryogenesis examined and, while equimolar amounts of ribosomal proteins were found in ribosomes, they were always synthesized in nonequimolar amounts during development. Rates of synthesis of individual ribosomal proteins differed from each other by more than an order of magnitude in some cases. Synthesis of ribosomal proteins accounted for 1.5, 1.5, and 1.1% of total protein synthesis during growth of the oocyte, in the fully grown oocyte, and in the unfertilized egg, respectively. During meiotic maturation of mouse oocytes the absolute rate of synthesis of ribosomal proteins decreased about 40%, from 620 to 370 fg/hr/cell, as compared to a 23% decrease in the rate of total protein synthesis during the same period. On the other hand, during early embryogenesis the absolute rates of synthesis of each of the 12 ribosomal proteins examined increased substantially as compared with those of the unfertilized egg, such that at the eight-cell stage of embryogenesis synthesis of ribosomal proteins (4.17 pg/hr/embryo) accounted for about 8.1% of the total protein synthesis in the embryo. Consequently, while the absolute rate of total protein synthesis increased about 1.5-fold during development from an unfertilized mouse egg to an eight-cell compacted embryo, the absolute rate of ribosomal protein synthesis increased more than 11-fold during the same period. These results seem to reflect the differences reported for the patterns of ribosomal RNA synthesis during early development of mammalian, as compared to nonmammalian, animal species. The results are compared with those obtained using oocytes and embryos fromXenopus laevis.  相似文献   

2.
RNA transcription and translation in sea urchin oocytes and eggs   总被引:3,自引:0,他引:3  
The steady-state concentrations and absolute rates of synthesis of ribosomal RNA (rRNA) molecules were measured in oocytes, eggs, embryos, and larvae of the Hawaiian sea urchin Tripneustes gratilla. The steady-state concentration per genome of the RNA precursor sequences measured by hybridization to a cloned rDNA fragment was approximately 100- to 300-fold greater in the RNA obtained from oocytes and eggs than in the RNA extracted from embryos and larvae. Since the rate of processing of the rRNA precursor at different stages is not greatly different, the rates of rRNA synthesis must be considerably greater in oocytes than in embryo cells. The absolute rate of RNA synthesis in oocytes and embryos was determined from the incorporation of [3H]guanosine into cellular GTP pools and into both precursor and mature rRNA species. The data indicate an approximately 40-fold higher rate of rRNA synthesis in oocytes than that measured in embryos or previously in larvae (J. Griffith and T. Humphreys, 1979, Biochemistry18, 2178–2185). Together these results indicate that the ribosomal genes are transcribed much more rapidly during sea urchin oogenesis than during embryogenesis or larval stages.  相似文献   

3.
Previtellogenic oocytes of Xenopus laevis synthesize large amounts of 5 S RNA and transfer RNA, but very little, if any, 28 S and 18 S RNA. About half of the RNA of these oocytes is stored in nucleoprotein particles sedimenting at 42 S. These particles contain 5 S RNA, transfer RNA, and several proteins, the function of which remains so far unknown.The proteins of the 42 S particles were analyzed by two-dimensional electrophoresis on polyacrylamide gel. The resulting fingerprints displayed one major and two minor basic spots. None of these coincided with any of the 37 spots produced by the 60 S subunit of the ribosomes and with the 30 spots produced by the 40 S subunit. We conclude that no ribosomal component other than 5 S RNA is present in the 42 S particles.The fingerprints of 40 S and 60 S ribosomal proteins from X. laevis coincided almost completely with the corresponding fingerprints from the rat and the rabbit.  相似文献   

4.
《Developmental biology》1985,110(1):230-237
Protein synthesis rates in Xenopus laevis oocytes from stage 1 through stage 6 were measured. In addition, the translational efficiencies, total RNA contents, and percentages of ribosomes in polysomes in growing oocytes at several stages were determined. Stage 1 oocytes synthesize protein at a mean rate of 0.18 ng hr−1 while stage 6 oocytes make protein at a rate of 22.8 ng hr−1. Polysomes from growing and full-grown oocytes sedimented in a sucrose gradient with a peak value of 300 S, corresponding to a weight-average packing density of 10 ribosomes per mRNA. Ribosome transit times of endogenous mRNAs were essentially unchanged at all stages examined. While the oocyte's total ribosomal RNA content was observed to increase about 115-fold during oogenesis, the percentage of ribosomes in polysomes remained constant at approximately 2%. Taken together, the data suggest that the 127-fold increase in protein synthesis which occurs during Xenopus oogenesis involves the progressive recruitment onto polysomes of mRNA from the maternal stockpile.  相似文献   

5.
Xenopus laevis eggs and gastrula stage embryos were fractionated into three equal sections normal to the animal-vegetal axis, and poly(A)+ RNA was isolated from each section. Hybridization of these poly(A)+ RNAs with [32P]cDNA synthesized using animal or vegetal poly(A)+ RNAs showed no detectable differences in the extents or rates of reaction. Thus, the vast majority of poly(A)+ RNAs are not segregated along the animal-vegetal axis. To increase the sensitivity of these experiments, [32P]cDNAs were prepared which had reduced levels of RNA sequences from the animal region of the gastrula stage embryo or spawned unfertilized egg. Hybridization reactions with these probes showed that 3 to 5% of the input cDNA represents poly(A)+ RNA sequences enriched 2- to 20-fold in the vegetal region of the egg or gastrula stage embryo.  相似文献   

6.
The cytoplasm of mature eggs of Xenopus laevis was found to contain a cytostatic factor (CSF) which induces cleavage arrest at metaphase when microinjected into one blastomere of a two-cell embryo of Xenopus laevis or Rana pipiens. The Rana CSF was found to be incapable of arresting mitosis in Xenopus embryos. Both Xenopus and Rana CSF were stabilized during the transfer procedure by Ca2+-chelation in the donor egg. The Xenopus CSF was not present in the germinal vesicle of immature oocytes, but arose in the cytoplasm at the time of germinal vesicle breakdown and subsequently disappeared at the time of fertilization or egg activation.  相似文献   

7.
Full-grown oocytes of amphibians respond in vitro to exogenous progesterone by undergoing physiological maturation (breakdown of the germinal vesicle (GVBD), meiosis, and acquisition of the capacity for activation). Both cytoplasm and “cytosol” from maturing oocytes have been shown to produce similar events when injected into unstimulated oocytes. This activity appeared within 4 hr after hormone treatment in Rana pipiens and Xenopus laevis and represents the earliest detectable, specific response of the oocyte yet observed, i.e., 6–8 hr before GVBD in Rana. Maturing oocytes retained activity as long as 100 hr after exposure to progesterone, and activity was also obtained from ovulated eggs and cleaving embryos. In addition, cytoplasm from Rana pipiens, Xenopus laevis, or Ambystoma mexicanum was effective in inducing maturation in oocytes of each other, indicating a lack of specificity.Recipient oocytes of Xenopus laevis consistently began to mature within 1.5–3 hr after injection of maturing cytoplasm, well before progesterone-treated controls. The timing of the response was closely related to the quantity of cytoplasm transferred, suggesting the presence of both a minimum and threshold level of cytoplasmic factor. Serial cytoplasmic transfer in Xenopus oocytes showed no significant loss of activity through 10 injections.  相似文献   

8.
Cytoplasmic ribosomal RNA (rRNA) synthesis was detected in white-banded stage 6 oocytes taken from female Xenopus laevis which were injected with [3H]guanosine 7 days previously. The specific radioactivity of the rRNA in oocytes collected from injected females by weekly laparotomies displays first-order exponential decay. Calculated values for the half-life of rRNA ranged from 9.1–30.9 days in experiments on four animals. The concept of ribosomes in large ovarian oocytes of amphibians as an absolutely stable, long-term storage product appears incorrect.  相似文献   

9.
10.
Displacement loops are found in mitochondrial DNA isolated from the ovaries of mature female Xenopus laevis. These displacement loops subtend some 7% of the contour length of a mitochondrial circular DNA. When mature oocytes are shed as unfertilized eggs at least 76% of the mitochondrial DNA in these eggs contains displacement loops. The implications of these findings are discussed with respect to displacement loop occurrence in other mitochondrial DNAs and especially with respect to mitochondrial DNA replication.  相似文献   

11.
RNA synthesis has been studied in oocytes taken from Xenopus laevis females which have not recently ovulated. Such females contain a population of large (stage 6) oocytes which exhibit white equatorial bands and which are considered to represent the terminal stage of oocyte development. Rates of RNA synthesis in these “banded” oocytes were measured by analyzing the kinetics of incorporation of 3H-guanosine into acid-precipitable, alkaline-labile material, and changes in precursor pool (GTP) specific activity during incubations. In additional experiments, rates of RNA synthesis were measured after 3H-GTP was injected directly into stage 6 oocytes. For comparison, rates of RNA synthesis were measured in lampbrush chromosome stage oocytes (stage 4; 0.5–0.6 mm diameter). The results show that, under the in vitro conditions employed, stage 6 oocytes are not metabolically dormant, but synthesize total RNA at a rate at least as great as the stage 4 oocytes.Qualitative studies on newly synthesized RNA in the two oocyte classes have been performed using sucrose density gradient centrifugation and acrylamide gel electrophoresis. Both stage 4 and stage 6 oocytes exhibited similar patterns, and the bulk of the RNA synthesized and accumulated during 12-hr pulses appears to be ribosomal. These observations are discussed in terms of existing concepts concerning synthetic activity in stage 6 oocytes.  相似文献   

12.
A wheat germ cell-free translation system has been used to analyze populations of abundant messenger RNA from sea urchin eggs and embryos and from amphibian oocytes and ovaries. We show directly that sea urchin eggs and embryos contain translatable mRNA of three general classes: poly(A)+ mRNA, poly(A)? histone mRNA, and poly(A)? nonhistone mRNA. Additionally, some histone synthesis appears to be promoted by poly(A)+ RNA. Sea urchin eggs seem to contain a higher proportion of prevalent poly(A)? nonhistone mRNAS than do embryos. Some differences in the proteins encoded by poly(A)+ and poly(A)? RNAs are detectable. Many coding sequences in the egg appear to be represented in both poly(A)+ and poly(A)? RNAs, since the translation products of the two RNA classes exhibit many common bands when run on one-dimensional polyacrylamide gels. However, some of this overlap is probably due to fortuitous comigration of nonidentical proteins. Distinct stage-specific changes in the spectra of prevalent translatable mRNAs of all three classes occur, although many mRNAs are detectable throughout early development. Particularly striking is the presence of an egg poly(A)? mRNA, encoding a 70,000–80,000 molecular weight protein, which is not detected in morula or later-stage embryos. In amphibian (Xenopus laevis and Triturus viridescens) ovary RNA, the translation assay detects the following three mRNA classes: poly(A)+ nonhistone mRNA, poly(A)? histone mRNA, and poly(A)+ histone mRNA. Amphibian ovary RNA appearently lacks an abundant poly(A)? nonhistone mRNA component of the magnitude detectable in sea urchin eggs. mRNA encoding histone-like proteins is found in the very earliest (small stage 1) oocytes of Xenopus as well as in later stage oocytes. During oogenesis there appear to be no striking qualitative changes in the spectra of prevalent translatable mRNAs which are detected by the cell-free translation assay.  相似文献   

13.
Previtellogenic oocytes of Tinca tinca accumulate very large amounts of 5S RNA. We show here that 5S RNA stored in oocytes differs from liver 5S RNA in 3 out of 120 nucleotides. Liver and oocyte 5S RNAs, therefore, are produced by different genes. Both kinds of 5S genes are active in oocytes. However, only 5S RNA of the oocyte type accumulates in these cells. In Tinca tinca as in Xenopus laevis, oocyte-type and somatic-type 5S RNAs differ by three properties, ie., primary structure, conformation, and metabolic stability. Nucleotide substitutions occur in different positions in oocyte and somatic 5S RNAs of Tinca tinca and Xenopus laevis. We do not understand how different sets of nucleotide substitutions confer to 5S RNAs of both species similar properties in vivo, namely, increased metabolic stability.  相似文献   

14.
Ribosomes of all eukaryotes contain a single molecule of 5S, 18S, and 28S RNA. In the frog Xenopus laevis the genes which code for 18S and 28S RNA are located in the nucleolar organizer, but these genes are not linked to the 5S RNA genes. Therefore the synthesis of the three ribosomal RNAs provides a model system for studying interchromosomal aspects of gene regulation. In order to determine if the synthesis of the three ribosomal RNAs are interdependent, the relative rate of 5S RNA synthesis was measured in anucleolate mutants (o/o), which do not synthesize any 18S or 28S RNA, and in partial nucleolate mutants (pl-1/o), which synthesize 18S and 28S RNA at 25% of the normal rate. Since the o/o and pl-1/o mutants have a complete and partial deletion of 18S and 28S RNA genes respectively, but the normal number of 5S RNA genes, they provide a unique system in which to study the dependence of 5S RNA synthesis on the synthesis of 18S and 28S RNA. Total RNA was extracted from embryos labeled during different stages of development and analyzed by polyacrylamide gel electrophoresis. Quite unexpectedly it was found that 5S RNA synthesis in o/o and pl-1/o mutants proceeds at the same rate as it does in normal embryos. Furthermore, 5S RNA synthesis is initiated normally at gastrulation in o/o mutants in the complete absence of 18S and 28S RNA synthesis.  相似文献   

15.
The oocytes of amphibians and teleosts begin to accumulate 5S RNA several months before other components of the ribosomes become available. Two types of genes coding for 5S RNA are active during oogenesis of these animals. One type of genes is expressed only in oocytes. The other type is expressed in both oocytes and somatic cells. In this paper, we show that the oocytes of Xenopus laevis do not accumulate 5S RNA of somatic type. We conclude that the products of the two types of genes behave differently during oogenesis. One product is stored by the oocytes, whereas the other is not. The heterogeneity of 5S genes in Xenopus laevis might have arisen because oocytes and somatic cells needed different kinds of 5S RNA. These needs are met by molecules having different primary structures, different conformations, and different metabolic stabilities in vivo. We do not understand how these properties are related to one another.  相似文献   

16.
Protein synthesis has been investigated in cell-free preparations from mature ovarian oocytes, unfertilized and fertilized eggs, and early embryos of Drosophila melanogaster. Preparations from unfertilized eggs have a specific activity that is 5- to 6-fold higher than the activity of fractions from ovarian oocytes. There is an additional small increase in activity of preparations from fertilized eggs. The specific activity that is rapidly attained in the fertilized egg remains essentially constant for 2 to 2.5 h after fertilization, decreases sharply during blastoderm formation, and again increases during gastrulation. The activities of unfertilized eggs decline slightly during the first 2 h after oviposition, and then decrease more sharply. About 35 % of the ribosomes in preparations from both unfertilized and fertilized eggs sediment in the polyribosome region of sucrose density gradients, whereas no polyribosomes could be detected in preparations from ovarian oocytes. In both ovarian oocytes and fertilized eggs, less than 1 % of the ribosome populations were present as subunits. Additional ribonucleoprotein material of buoyant densities different from those of ribosomal subunits or ribosomes was found throughout the sucrose gradients. About 3.5 % of the ribosomes were found to be membrane-bound in preparations from both unfertilized and fertilized eggs.  相似文献   

17.
In Xenopus laevis oocytes, 5S RNA is stored in the cytoplasm until vitellogenesis, at which time it is imported into the nucleus and targeted to nucleoli for ribosome assembly. This article shows that throughout oogenesis there is a pool of nuclear 5S RNA which is not nucleolar-associated. This distribution reflects that of oocyte-type 5S RNA, which is the major 5S RNA species in oocytes; only small amounts of somatic-type, which differs by six nucleotides, are synthesized. Indeed, 32P-labeled oocyte-type 5S RNA showed a degree of nucleolar localization similar to endogenous 5S RNA (33%) after microinjection. In contrast, 32P-labeled somatic-type 5S RNA showed significantly enhanced localization, whereby 70% of nuclear RNA was associated with nucleoli. A chimeric RNA molecule containing only one somatic-specific nucleotide substitution also showed enhanced localization, in addition to other somatic-specific phenotypes, including enhanced nuclear import and ribosome incorporation. The distribution of 35S-labeled ribosomal protein L5 was similar to that of oocyte-type 5S RNA, even when preassembled with somatic-type 5S RNA. The distribution of a series of 5S RNA mutants was also analyzed. These mutants showed various degrees of localization, suggesting that the efficiency of nucleolar targeting can be influenced by many discrete regions of the 5S RNA molecule. J. Cell. Biochem. 69:490–505, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
19.
20.
All amino acids and several nucleic acid precursors are taken up by Xenopus laevis embryos. The embryos are completely intact and not modified in any way. These precursors are directly incorporated into the macromolecules of Xenopus embryos and not prokaryotic contaminants as has been previously claimed. Radioactive leucine is incorporated into Xenopus laevis ribosomal proteins as characterized by sucrose gradient centrifugation. The uptake of the amino acids is cycloheximide sensitive and unaffected by chloramphenicol. Radioactive adenosine and orotic acid are taken up and incorporated into tRNA and rRNA at high levels as characterized by sucrose gradients and electrophoresis. These characterizations of labeled macromolecules unequivocally show that normal Xenopus laevis embryos will take up and incorporate labeled precursors to levels which are sufficient to study cellular biochemical events at such early stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号