首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA ligase IV functions in DNA non-homologous end-joining, in V(D)J recombination, and during brain development. We previously reported a homozygous mutation (R278H) in DNA ligase IV in a developmentally normal leukemia patient who overresponded to radiotherapy. The impact of this hypomorphic mutation has been evaluated using cellular, biochemical, and structural approaches. Structural modeling using T7 DNA ligase predicts that the activity and conformational stability of the protein is likely to be impaired. We show that wild type DNA ligase IV-Xrcc4 is an efficient double-stranded ligase with distinct optimal requirements for adenylate complex formation versus rejoining. The mutation impairs the formation of an adenylate complex as well as reducing the rejoining activity. Additionally, it imparts temperature-sensitive activity to the protein consistent with the predictions of the structural modeling. At the cellular level, the mutation confers a unique V(D)J recombination phenotype affecting the fidelity of signal joint formation with little effect on the frequency of the reaction. These findings suggest that hypomorphic mutations in ligase IV may allow normal development but confer marked radiosensitivity.  相似文献   

2.
3.
Abstract— The activity of fatty acid synthetase was studied in the brain and liver of the developing rat. Synthetase activity in brain was considerably higher in foetal and suckling rats than in older animals However, except for a small transient rise in the perinatal period, activity in liver was low until weaning when a dramatic rise occurred. Activity in brain varied according to the quantity of dietary fat only in long-term experiments, whereas in liver nutritional influences clearly predominated in determining the rapid developmental changes of synthetase activity. Administration of hydrocortisone diminished hepatic activity but did not change brain synthetase. In the hypothyroid state activity in brain and liver was consistently decreased. However, in the hyperthyroid state hepatic activity increased but activity in brain did not change. The relatively high activity of fatty acid synthetase during brain development has been discussed in relation to the critical role of this enzyme system in brain metabolism. The effect of the hypothyroid state on the activity of brain synthetase suggests the possibility of hormonal control of this enzyme activity. The responses of hepatic synthetase to the hormonal influences delineate a specific step by which these compounds may exert their effect on fatty acid biosynthesis.  相似文献   

4.
: Tubulin tyrosine ligase catalyzes the reversible addition of tyrosine to the C-terminus of tubulin α chains. By using ligase and carboxypeptidase A in conjunction, we have previously shown that brain cytoplasmic tubulin exists in three forms: 15–40% already has C-terminal tyrosine, another 10-30% can accept additional tyrosine, and about one-half is an uncharacterized species which is not a ligase substrate. A membrane-bound fraction of brain tubulin, purified by vinblastine precipitation from a detergent extract, has been found to differ by the complete absence of preexisting tyrosine. The membrane fraction from which tubulin was extracted also contained masked forms of both ligase and a distinct detyrosylating enzyme, which can be released by detergent extraction. The turnover of α-chain C-terminal tyrosine in vivo was studied by incubating brain mince with labeled tyrosine, or injecting it intracerebrally, under conditions where protein synthesis was inhibited. Tyrosine appeared to turn over to about the same extent in membrane-bound, as in soluble, tubulin. This apparently paradoxical result was not due to ATPase in the membrane fraction, which might have allowed ligase-catalyzed exchange between free and fixed tyrosine. Authentic [14C]tyrosylated tubulin added to the brain membrane fraction was not detyrosylated or subject to endoprotease digestion during subsequent procedures to isolate tubulin. The unexpected finding that tubulin tyrosylated at the C-terminal in vivo appears to be in the “non-substrate” fraction points toward a possible resolution of the paradox.  相似文献   

5.
A complimentary DNA clone encoding the entire human palmitoyl-CoA ligase has been isolated from a liver cDNA library and sequenced in it's entirety. The predicted product is a 699 amino acid protein. Southern analysis utilizing the human palmitoyl-CoA ligase gene as a probe revealed varying degrees of similarity amongst various mammalian species. The palmitoyl-CoA ligase gene is highly expressed in liver, heart, skeletal muscle and kidney, and to a lesser extent in brain, lung, placenta and pancreas. The expression of palmitoyl-CoA ligase in various tissue parallels the function of this enzyme in the metabolism of fatty acids in these tissues.  相似文献   

6.
Lipoic acid (LA) has been reported as a potential therapeutic agent due its antioxidants proprieties. It was considered its effect in different organs (gills, brain, muscle and liver) of the fish Corydoras paleatus (Callychthyidae). LA (70 mg/kg of body mass) was added to a commercial fish diet, organisms being fed daily (1% body weight). Sixty animals (mean mass: 2.37+/-0.09 g) were placed randomly in aquariums and received (+LA) or not (-LA) lipoic acid enriched diet during four weeks. After, fish were killed and the brain, muscle, gills and liver were dissected. LA treatment reduced significantly (p<0.05) reactive oxygen species concentration in brain and increased (p<0.05) glutamate-cysteine ligase activity in brain and liver of the same experimental group. LA fed organisms showed higher (p<0.05) brain glutathione-S-transferase activity, indicating that LA improves the detoxification and antioxidant capacity face components that waste glutathione in phase II reactions. A conspicuous reduction of protein oxidation was observed in muscle and liver of +LA organisms, indicating that the treatment was also effective in reducing oxidative stress parameters.  相似文献   

7.
8.
Association between protein inclusions and neurodegenerative diseases, including Parkinson's and Alzheimer's diseases, and polyglutamine disorders, has been widely documented. Although ubiquitin is conjugated to many of these aggregated proteins, the 26S proteasome does not efficiently degrade them. Mutations in the ubiquitin-protein ligase Parkin are associated with autosomal recessive juvenile Parkinsonism. Although Parkin-positive inclusions are not detected in brains of autosomal recessive juvenile Parkinsonism patients, Parkin is found in Lewy bodies in sporadic disease. This suggests that loss of Parkin ligase activity via mutation, or sequestration to Lewy bodies, is a contributory factor to sporadic disease onset. We now demonstrate that decreased proteasomal activity causes formation of large, noncytotoxic inclusions within the cytoplasm of both neuronal and nonneuronal cells overexpressing Parkin. This is not a general phenomenon as there is an absence of similar inclusions when HHARI, a structural homolog of Parkin, is overexpressed. The inclusions colocalize with ubiquitin and with proteasomes. Furthermore, Parkin inclusions colocalize with gamma-tubulin, acetylated alpha-tubulin, and cause redistribution of vimentin, suggesting aggresome-like properties. Our data imply that lower proteasomal activity, previously observed in brain tissue of Parkinson's disease patients, leads to Parkin accumulation and a concomitant reduction in ligase activity, thereby promoting Lewy body formation.  相似文献   

9.
The histochemical pattern of red, pink and white muscle of fish living in fresh, brackish, and salt water is reported. The muscle fibres were stained routinely during the year for lactate dehydrogenase (LDH), menadione α-glycerophosphate dehydrogenase (Mα—GPDH), succinic dehydrogenase (SDH), myosin adenosine triphosphatase (myosin ATPase), phosphorylase, lipids and glycogen. The pink and red muscles contain more glycogen and lipids and have a higher SDH activity, which is in accord with their aerobic metabolism and function in sustained swimming activity. The acid labile myosin ATPase activity characteristic of fast twitch fibres is present in the white fibres of most species, however in the white muscle of Gobius paganellus the enzyme activity is stable to both acid and alkali and, in addition, there is a scattered distribution of different fibre types in red and, especially, pink muscle. A study of seasonal variation patterns of myosin ATPase in white muscle of mugilidae over a period of two years has demonstrated, in late summer, the appearance of new small diameter fibres, with a high acid stable enzyme activity, that develop into the large diameter acid labile fibres.  相似文献   

10.
Abstract: The activity of the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was measured in 14 rat tissues and in subcellular fractions of rat liver by a sensitive fluorometric method, using cyclic NADP as substrate. CNP activity in brain (339 μmol/h/mg protein) was fourfold that of the sciatic nerve. The activities in tissues outside the nervous system ranged from a low of 0.42 μmol/h/mg protein in the unwashed red blood cell to a high of 9.96 in the spleen. The activity was highest in tissues containing cells with membranes capable of undergoing transformation and elaboration (spleen and thymus) and low in those in which the cell membranes are morphologically stable (muscle and red cell). The enzyme was found in all major liver subtractions, with the highest activities in the microsomal and nuclear fractions. Despite the large difference in the maximal velocities of CNP in brain and liver, the affinity of the liver enzyme for the substrate ( k m) was similar to that of brain enzyme. Brain CNP was stable over a 48-h postmortem period.  相似文献   

11.
Liver peroxisomes from both rat and humans have previously been shown to contain enzymes that catalyze the oxidative cleavage of the C27-steroid side chain in the formation of bile acids. It has not been clear, however, whether the initial step, formation of the CoA-esters of the 5 beta-cholestanoic acids, also occurs in these organelles. In the present work the subcellular localization of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) ligase (THCA-CoA synthetase) and of 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoyl-CoA (DHCA-CoA) ligase in rat liver has been investigated. Main subcellular fractions and peroxisome-rich density gradient fractions from rat liver were incubated with THCA or DHCA, CoA, ATP, and Mg2+. Formation of THCA-CoA and DHCA-CoA was determined after high pressure liquid chromatography of the incubation extracts. The microsomal fraction contained the highest specific (and also relative specific) activity both for the formation of THCA-CoA and DHCA-CoA. The rates of THCA-CoA formation were further increased from 124-159 nmol/mg.hr-1 in crude microsomal fractions to 184-220 nmol/mg.hr-1 when studied in purified rough endoplasmic reticulum fractions. Formation of THCA-CoA in peroxisomal fractions prepared in Nycodenz density gradients could be accounted for by a small contamination (3-7%) by microsomal protein. The distribution of THCA-CoA ligase was different from that of palmitoyl-CoA ligase that was found to be localized also to the peroxisomal fractions.  相似文献   

12.
The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase. This enzyme, purified from Rhodopseudomonas palustris, is maximally active with 5 microM benzoate. To study the molecular basis for this reaction, the benzoate-coenzyme A ligase gene (badA) was cloned and sequenced. The deduced amino acid sequence of badA showed substantial similarity to other coenzyme A ligases, with the highest degree of similarity being that to 4-hydroxybenzoate-coenzyme A ligase (50% amino acid identity) from R. palustris. A badA mutant that was constructed had barely detectable levels of ligase activity when cell extracts were assayed at 10 microM benzoate. Despite this, the mutant grew at wild-type rates on benzoate under laboratory culture conditions (3 mM benzoate), and mutant cell extracts had high levels of ligase activity when assayed at a high concentration of benzoate (1 mM). This suggested that R. palustris expresses, in addition to BadA, a benzoate-activating enzyme(s) with a relatively low affinity for benzoate. A possible role of 4-hydroxybenzoate-coenzyme A ligase (encoded by hbaA) in this capacity was investigated by constructing a badA hbaA double mutant. Although the double mutant grew more slowly on benzoate than badA cells, growth rates were still significant, suggesting the involvement of a third enzyme in benzoate activation. Competition experiments involving the addition of a small amount of cyclohexanecarboxylate to ligase assay mixtures implicated cyclohexanecarboxylate-coenzyme A ligase as being this third enzyme. These results show that wild-type R. palustris cells synthesize at least three enzymes that can catalyze the initial step in anaerobic benzoate degradation during growth on benzoate. This observation supports previous suggestions that benzoyl-coenzyme A formation plays a central role in anaerobic aromatic compound biodegradation.  相似文献   

13.
Palmityl-CoA synthetase activity (acid CoA ligase (AMP), E C 6.2.1.3.) was determined using the radioassay method. The rate of formation of palmityl-CoA under the optimal conditions established was 20 nmoles per mg protein per min for mitochondria and 5.8 nmoles for the 9000 × g supernatant. The activity of palmityl-CoA synthetase in mitochondria from skeletal muscle of dystrophic mice was not significantly different from that obtained in normal littermate controls, whereas the activity of this enzyme in the 9000 × g supernatant fraction from dystrophic muscle preparation was found to be significantly higher than for the corresponding controls. It is concluded that the previously observed decrease in palmitate-1-14C oxidation in dystrophic muscle mitochondria was not due to a defect in the activation of palmitic acid.  相似文献   

14.
We have cloned the murine glutamine synthetase (GS) gene and measured GS enzyme activity and mRNA in five tissues (retina, brain, liver, kidney, and skeletal muscle) during perinatal development. Retinal GS enzyme activity increases 200-fold between Day 1 and Day 21 and is accompanied by an increase in the level of GS mRNA; developmental regulation in other tissues is much less dramatic. Based on Southern blotting analysis, a single GS gene gives rise to the tissue-specific patterns of GS mRNA expression. The increase in murine retinal GS observed during perinatal development is similar in magnitude to that observed in the chicken retina just prior to hatching. In the embryonic chicken retina, glucocorticoid hormones mediate a large increase in the level of GS mRNA. However, although glucocorticoids induce a 12-fold increase in GS mRNA in murine skeletal muscle, expression of the retinal enzyme and mRNA is only modestly glucocorticoid-inducible in the mouse. Therefore, despite the hormonal responsiveness of the murine GS gene, it is not likely that glucocorticoids are important physiological modulators of the developmental rise in murine retinal GS.  相似文献   

15.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

16.
Abstract: We measured long-chain fatty acid:coenzyme A (CoA) ligase (EC 6.2.1.3) activity with four fatty acids in brain homogenates, and cellular and subcellular fractions to determine whether there are differences in activity that could be correlated with differences in fatty acid composition and metabolism. In rat brain homogenates, ligase activity varied appreciably with the four acids, with 18:2 > 18:1 > 16:0 > 22:1 (nmol acyl-CoA formed/min/mg protein; 1.46, 1.20, 0.96, and 0.57, respectively). This order was similar under all incubation conditions tested, including variable pH and fatty acid concentrations. The relative specific activities (RSA, 16:0 = 1.0) with the four substrates were similar in rat brain homogenate, mitochondria, and microsomes, with the highest specific activities in the latter fraction. The RSA were also similar in ox brain homogenates, in rabbit brain microsomes prepared from gray and white matter, in neurons isolated from rat brain, and in cultured neuroblastoma cells. Rat liver homogenates had a significantly different pattern of RSA. These results indicate that the ligase(s) has a preference for certain fatty acids, but suggest that the major control of fatty acid composition and metabolism is a function of subsequent metabolic steps.  相似文献   

17.
The aim of this study was to identify the causative genetic lesion in two apparently unrelated newborns having lethal lactic acidosis, multi-organ failure and congenital malformations including interrupted aortic arch, who exhibited mild methylmalonic aciduria, combined mitochondrial respiratory chain deficiency, and marked muscle mitochondrial DNA depletion. A novel mutation in the SUCLG1 gene was identified. Phenotype severity in Succinate-CoA ligase dysfunction appears to be more correlated to the muscle mtDNA content than to the tissue distribution of the heterodimer subunits. Prominent impairment of mitochondrial respiratory chain may result in deep ravages in developmental tissues leading to multiple organ failure and malformations.  相似文献   

18.
A ribonucleolytic enzyme (RNase H) which degrades the RNA strand of a RNA-DNA double stranded hybrid has been extracted from rat brain and characterized. RNase H activity in the cerebella increased up to around 6th day after birth and then decreased in adult rat cerebella, just as DNA polymerase and DNA ligase. The RNase H activity in non-cerebellar part decreased gradually toward adult after birth. On the other hand, RNase activity did not change during development of brain. The activity of total RNase is high at newborn, and decreased to 12th day after birth. These results suggest that RNase H is implicated in DNA replication in rat brain.  相似文献   

19.
The activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase in rat tissues   总被引:8,自引:8,他引:0  
The activity of the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was measured in 14 rat tissues and in subcellular fractions of rat liver by a sensitive fluorometric method, using cyclic NADP as substrate. CNP activity in brain (339 mumol/h/mg protein) was fourfold that of the sciatic nerve. The activities in tissues outside the nervous system ranged from a low of 0.42 mumol/h/mg protein in the unwashed red blood cell to a high of 9.96 in the spleen. The activity was highest in tissues containing cells with membranes capable of undergoing transformation and elaboration (spleen and thymus) and low in those in which the cell membranes are morphologically stable (muscle and red cell). The enzyme was found in all major liver subfractions, with the highest activities in the microsomal and nuclear fractions. Despite the large difference in the maximal velocities of CNP in brain and liver, the affinity of the liver enzyme for the substrate (km) was similar to that of brain enzyme. Brain CNP was stable over a 48-h postmortem period.  相似文献   

20.
The formation of gamma-glutamylhydroxamate by homogenates under optimum assay condition showed an inconstancy in the ratios of the enzyme activities utilizing l-glutamate and ATP (gamma-glutamylhydroxamate synthetase) and l-glutamine and ADP (l-glutamine-hydroxylamine glutamyltransferase) in a number of normal and neoplastic rat tissues. Although gamma-glutamylhydroxamate synthetase activities in adult livers and kidneys were identical in males and females, l-glutamine-hydroxylamine glutamyltransferase activities in the organs of females were significantly lower. The developmental formations of the two activities in liver, kidney, brain and muscle were not simultaneous. The l-glutamine-hydroxylamine glutamyltransferase activity in foetal liver or neonatal kidney could be prematurely evoked by thyroxine, but the gamma-glutamylhydroxamate synthetase activity remained unchanged. Injections of cortisol also had dissimilar effects on the two activities in thymus and hepatomas. The discrepant tissue distribution, asynchronous developmental formation and differential response to several hormonal stimuli provide evidence in vivo that the two activities are not catalysed by the same protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号