首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of multinucleate skeletal muscle cells (myotubes) is a Ca2(+)-dependent process involving the interaction and fusion of mononucleate muscle cells (myoblasts). Specific cell-cell adhesion precedes lipid bilayer union during myoblast fusion and has been shown to involve both Ca2(+)-independent (CI)2 and Ca2(+)-dependent (CD) mechanisms. In this paper we present evidence that CD myoblast adhesion involves a molecule similar or identical to two known CD adhesion glycoproteins, N-cadherin and A-CAM. These molecules were previously identified by other laboratories in brain and cardiac muscle, respectively, and are postulated to be the same molecule. Antibodies to N-cadherin and A-CAM immunoblotted a similar band with a molecular weight of approximately 125,000 in extracts of brain, heart, and pectoral muscle isolated from chick embryos and in extracts of muscle cells grown in vitro at Ca2+ concentrations that either promoted or inhibited myotube formation. In assays designed to measure the interaction of fusion-competent myoblasts in suspension, both polyclonal and monoclonal anti-N-cadherin antibodies inhibited CD myoblast aggregation, suggesting that N-cadherin mediates the CD aspect of myoblast adhesion. Anti-N-cadherin also had a partial inhibitory effect on myotube formation likely due to the effect on myoblast-myoblast adhesion. The results indicate that N-cadherin/A-CAM plays a role in myoblast recognition and adhesion during skeletal myogenesis.  相似文献   

2.
Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation--trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The first four inhibitors of myotube formation do not perturb myoblast adhesion but rather block fusion of aggregated cells, which suggests that these agents perturb molecular events required for the union of the lipid bilayers. By contrast, tunicamycin exerts its effect by inhibiting the myoblast adhesion step, thereby blocking myotube formation. The effect of tunicamycin can be blocked by a protease inhibitor, however, which implies that the carbohydrate residues protect the glycoproteins from proteolytic degradation rather than participate directly in cell-cell adhesion. Whereas trypsin treatment of myoblasts in the absence of Ca++ destroys the cells' ability to exhibit Ca++-dependent adhesion, the presence of Ca++ during trypsin treatment inhibits the enzyme's effect, which suggests that myoblast adhesion is mediated by a glycoprotein(s) that has a conformation affected by Ca++. Finally, myoblast adhesion is inhibited by an antiserum raised against fusion-competent myoblasts. The effect of the antiserum is blocked by a fraction from the detergent extract of pectoral muscle that binds to immobilized wheat germ agglutinin, which again suggests that glycoproteins mediate Ca++-dependent myoblast adhesion.  相似文献   

3.
《The Journal of cell biology》1989,109(4):1779-1786
During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinositol-specific phospholipase C (PI-PLC). The effect of PI-PLC on myoblast adhesion is dose dependent and inhibited by D-myo- inositol 1-monophosphate and the effect on myotube formation is reversible, suggesting a specific, nontoxic effect on myogenesis by the enzyme. A soluble form of adhesion-related glycoproteins is released from fusion-competent myoblasts by treatment with PI-PLC as evidenced by (a) the ability of phospholipase C (PLC)-released material to block the adhesion-perturbing activity of a polyclonal antiserum to intact myoblasts; and (b) the ability of PLC-released glycoprotein to stimulate adhesion-perturbing antisera when injected into mice. PI-PLC treatment of fusion-competent myoblasts releases an isoform of N-CAM into the supernate, suggesting that N-CAM may participate in mediating myoblast interaction during myogenesis.  相似文献   

4.
Preservation of cell aggregation is necessary for thyroid follicular differentiation in vitro and requires stimulation by thyrotropin (TSH). We have tested the hypothesis that TSH preferentially increases thyroid cell-cell adhesion relative to cell-substrate adhesion. Cell-cell adhesion was measured in short-term suspension cultures by the decrease in the fraction of single cells remaining in culture (free cell ratio, FCR). When incubated in medium alone freshly isolated cells showed a progressive fall in FCR but this was accelerated by TSH and the cyclic AMP analog, 8-(4-chlorophenylthio)cyclic AMP. Aggregation was dependent upon extracellular Ca2+ and also promoted by a cell-free membrane extract. In contrast, attachment of cells to plastic dishes treated for tissue culture was not affected by TSH. We conclude that thyroid cells possess a TSH-sensitive cell adhesion system. The preferential increase in cell-cell adhesion may be one mechanism by which TSH stimulates the formation and preservation of follicles in vitro.  相似文献   

5.
Han JW  Lee HJ  Bae GU  Kang JS 《Cellular signalling》2011,23(7):1162-1169
The Integrin-mediated cell adhesion to the extracellular matrix is implicated in the control of proliferation, survival, migration and differentiation of myoblasts. Focal adhesion kinase (FAK) mediates signals from Integrins and plays an essential role in myotube formation. Cdo forms a multiprotein complex that includes other cell adhesion molecules like Cadherins and Boc. Multiple signals emanate from such complexes, including Cdc42 and p38MAPK pathways to activate MyoD. Here we show that C2C12 myoblasts cultured in suspension or on Poly-L-Lysine (PLL), a well known Integrin-independent substratum, failed to express Cdo and MyoD, while the expression of Cadherins and Boc was unchanged. In addition, the activation of Akt and p38MAPK as well as the expression of Cdc42 was affected in these cells. Overexpression of FAK rescued MyoD and Cdo expression as well as myotube formation of C2C12 cells on PLL. Furthermore, reintroduction of Cdo induced enhanced myotube formation on PLL and increased the expression of myogenic markers. Inhibition of ROCK or overexpression of Cdc42-V12 in C2C12 cells upregulated Cdc42 and MyoD expression and rescued defective myoblast differentiation. Taken together, these data indicate that the Integrin/FAK signaling pathway is required for myoblast differentiation by regulating the expression of the promyogenic factors, Cdo, MyoD and Cdc42.  相似文献   

6.
Sea urchin embryos can be dissociated into a suspension of single cells that reconstitute embryo-like structures. When reconstitution is conducted in stationary cultures the first step is attachment of the cells to the culture plate, which requires calcium and metabolic energy but not protein synthesis. We have found that protease treated cells form cell-cell associations in stationary cultures without attaching to the culture plates, and that cell-plate attachments are unaffected by inhibition of protein synthesis. These data suggest that cell surface proteins are needed for cell-plate attachment and that these proteins are present on freshly dissociated cells. We also demonstrated that butanol extracted cells attach to the plates, but do not form functional cell-cell associations unless the butanol extracted material is restored to them. We conclude that sea urchin embryo cells contain two classes of attachment components. The first class functions in the cell-plate attachments, is protease sensitive, and not extracted by butanol; the second class is necessary for cell-cell associations, is protease insensitive, and extracted by butanol. Since protease treated cells reconstitute embryo-like structures without attaching to the culture plates, only the second class of attachment components is necessary for embryo reconstitution.  相似文献   

7.
Polysialic acid attached to the neural cell adhesion molecule (NCAM) is thought to play a critical role in development. NCAM in muscle tissue contains a muscle-specific domain (MSD) to which mucin type O-glycans are attached. In the present study, using the C2C12 myoblast system, we show that NCAM containing MSD is increasingly expressed on the cell surface as myotubes form. Polysialic acid is primarily attached to N-glycans of NCAM, and polysialylated NCAM is expressed on the outer surface of myotube bundles. By transfecting cDNAs encoding wild type and mutant forms of NCAM, we found that NCAM containing MSD facilitates myoblast fusion, and this effect is diminished by mutating O-glycosylation sites at MSD. By contrast, forced expression of polysialic acid in early differentiation stages reduces myotube formation and delays the expression of NCAM containing the MSD domain. Strikingly, inhibition of polysialic acid synthesis by antisense DNA approach induced differentiation in both human rhabdomyosarcoma cells, which overexpress polysialic acid, and C2C12 cells. These results indicate that polysialic acid and mucin type O-glycans on NCAM differentially regulate myoblast fusion, playing critical roles in muscle development.  相似文献   

8.
Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion.  相似文献   

9.
Intracellular Ice Formation Is Affected by Cell Interactions   总被引:5,自引:0,他引:5  
Cell-to-cell and cell-to-surface interactions are important to the structure and function of tissues. These interactions are also important determinants of low-temperature responses in tissues. Four in vitro models using hamster fibroblast cells in tissue culture were used to investigate the influence of cell-cell and cell-surface interactions on intracellular ice formation in these systems. The four models were: (a) single cells in suspension; (b) cells individually attached to glass with only cell-to-surface adhesion; (c) colonies of cells attached to glass with both cell-cell and cell-surface interactions; and (d) multicellular spheroids with extensive cell-cell contacts. Cryomicroscopy was used to monitor the prevalence and kinetics of intracellular ice formation after ice nucleation in the extracellular solution. The temperature for intracellular freezing in 50% of the cells was significantly affected by both cell-cell and cell-surface interactions. There was also evidence of intercellular nucleation through cell-cell interactions. The results indicate that cell-cell and cell-surface interactions play a significant role in the low-temperature response of tissue systems.  相似文献   

10.
IL-4 acts as a myoblast recruitment factor during mammalian muscle growth   总被引:10,自引:0,他引:10  
Horsley V  Jansen KM  Mills ST  Pavlath GK 《Cell》2003,113(4):483-494
  相似文献   

11.
Myoblast fusion is fundamental to the development and regeneration of skeletal muscle. To fuse, myoblasts undergo cell-cell recognition and adhesion and merger of membranes between apposing cells. Cell migration must occur in advance of these events to bring myoblasts into proximity, but the factors that regulate myoblast motility are not fully understood. CD164 is a cell surface sialomucin that is targeted to endosomes and lysosomes via its intracellular region. In hematopoietic progenitor cells, CD164 forms complexes with the motility-stimulating chemokine receptor, CXCR4, in response to the CXCR4 ligand, CXCL12/SDF-1 (Forde, S., Tye, B. J., Newey, S. E., Roubelakis, M., Smythe, J., McGuckin, C. P., Pettengell, R., and Watt, S. M. (2007) Blood 109, 1825-1833). We have previously shown that CD164 stimulates myotube formation in vitro. We report here that CD164 is associated with CXCR4 in C2C12 myoblasts. Cells in which CD164 levels are increased or decreased via overexpression or RNA interference-mediated knockdown, respectively, show enhanced or reduced myotube formation and cell migration, the latter both basally and in response to CXCL12/SDF-1. Furthermore, expression of CD164 cytoplasmic tail mutants that alter the endosome/lysosome targeting sequence and, consequently, the subcellular localization in myoblasts, reveals a similar correlation between cell motility and myotube formation. Finally, Cd164 mRNA is expressed in the dorsal somite (the early myogenic compartment of the mouse embryo) and in premuscle masses. Taken together, these results suggest that CD164 is a regulator of myoblast motility and that this property contributes to its ability to promote myoblast fusion into myotubes.  相似文献   

12.
13.
14.
Both the skeletal muscle myoblast cell line L6 and an adhesion- deficient variant of L6 released glycoprotein complexes, termed adherons, into their culture medium. The adherons from the variant, M3A, differed from those of L6 in a number of properties. M3A adherons were much less effective in promoting the cell-substratum and cell-cell adhesion of myoblasts than L6 particles. The adherons from the two cell lines also differed in their relative sedimentation velocities in sucrose gradients and had different chemical compositions. The M3A particle lacked chondroitin and contained relatively less collagen and fibronectin than the L6 adheron. Both L6 and M3A particles adhered to plastic surfaces and cells equally well in the absence of calcium ions. Neither cell-cell adhesion nor particle aggregation occurred in calcium- free medium. However, in the presence of calcium, the L6 adherons aggregated completely and M3A particles aggregated poorly. These data suggest that at least two sets of interactions are required for adheron- mediated adhesion: a calcium-independent binding of the adheron to the cell, and a calcium-dependent interaction between particles that is directly responsible for adhesion. The M3A variant is blocked at the calcium-dependent step, resulting in an adhesion deficiency.  相似文献   

15.
To understand the nature of the cell adhesions that must be modified during sea urchin embryo primary mesenchyme formation, we are studying the adhesive components of the hatched blastula stage embryo of Strongylocentrotus purpuratus. Pronase treatment conditions have been defined that leave the cells intact and able to recover from the effects of the protease upon its removal. Under these conditions, adhesion of the cells to tissue culture plates is totally eliminated, but cell-cell adhesion formation is only partially inhibited. Analysis of iodinated cell surface proteins indicates that most are affected by thepronase. Further studies of pronase effects found that sodium azide-treated cells are slightly adhesive and that pronase treatment of azidc-treated cells totally eliminates cell-cell adhesions.  相似文献   

16.
Cells within rat islets of Langerhans are typically organized as a core of B-cells, surrounded by the other cell types. When mixed in culture, primary islet cells and insulinoma (RIN2A) cells form aggregates where B-cells are centrally located, surrounded by non-B-cells, while RIN-cells segregate as the outermost layer. To gain insight into the molecular basis underlying this nonrandom cellular organization, the aggregation properties of the three cell populations were studied. Isolated islet cells were separated into B-cells and non-B-cells by autofluorescence-activated cell sorting (FACS). In a short-term aggregation assay, primary B-cell aggregation in the absence of calcium was only 19 +/- 3.7%, compared to the 67 +/- 2.9% seen in the presence of calcium (mean +/- SEM; P less than 0.001; n = 7). By contrast, non-B-cell aggregation and RIN cell aggregation in the absence of calcium (62 +/- 2 and 66 +/- 2%, respectively) were only slightly less than with calcium (70 +/- 3 and 76 +/- 3%). The surface density of the Ca2(+)-independent neural CAM (NCAM) was therefore measured by flow cytometry and found to be 2.64 +/- 0.82-fold higher in non-B-cells, compared to that in B-cells (P less than 0.01; n = 3). Even higher levels were found on RIN cells. In the three cell types, NCAM-140 was the only molecular form detected by immunoblotting. In conclusion, differences in the calcium dependency of aggregation and in the levels of NCAM are demonstrated among islet B-cells, non-B-cells, and RIN cells. Because cell-cell adhesion is crucial for the maintenance of adult tissue, these aggregation specificities might contribute to the concentric segregation of islet cell types in culture and to the nonrandom distribution of cells within rat islets.  相似文献   

17.
Cadherin engagement regulates Rho family GTPases.   总被引:1,自引:0,他引:1  
The formation of cell-cell adherens junctions is a cadherin-mediated process associated with reorganization of the actin cytoskeleton. Because Rho family GTPases regulate actin dynamics, we investigated whether cadherin-mediated adhesion regulates the activity of RhoA, Rac1, and Cdc42. Confluent epithelial cells were found to have elevated Rac1 and Cdc42 activity but decreased RhoA activity when compared with low density cultures. Using a calcium switch method to manipulate junction assembly, we found that induction of cell-cell junctions increased Rac1 activity, and this was inhibited by E-cadherin function-blocking antibodies. Using the same calcium switch procedure, we found little effect on RhoA activity during the first hour of junction assembly. However, over several hours, RhoA activity significantly decreased. To determine whether these effects are mediated directly through cadherins or indirectly through engagement of other surface proteins downstream from junction assembly, we used a model system in which cadherin engagement is induced without cell-cell contact. For these experiments, Chinese hamster ovary cells expressing C-cadherin were plated on the extracellular domain of C-cadherin immobilized on tissue culture plates. Whereas direct cadherin engagement did not stimulate Cdc42 activity, it strongly inhibited RhoA activity but increased Rac1 activity. Deletion of the C-cadherin cytoplasmic domain abolished these effects.  相似文献   

18.
Cell-cell fusion is a fundamental cellular process that is essential for development as well as fertilization. Myoblast fusion to form multinucleated skeletal muscle myotubes is a well studied, yet incompletely understood example of cell-cell fusion that is essential for formation of contractile skeletal muscle tissue. Studies in this report identify several novel cytoskeletal events essential to an early phase of myoblast fusion among cultured murine myoblasts. During myoblast pairing and alignment, cortical actin filaments organize into a dense actin wall structure that parallels and extends the length of the plasma membrane of the bipolar, aligned cells. As fusion progresses, gaps appear within the actin wall at sites of vesicle accumulation, the vesicles pair across the aligned myoblasts, cell-cell contacts and fusion pores form. Inhibition of nonmuscle myosin IIA (NM-MHC-IIA) motor activity prevents formation of this cortical actin wall, as well as the appearance of vesicles at a membrane proximal location, and myoblast fusion. These results suggest that early formation of a subplasmalemmal actin wall during myoblast alignment is a critical event for myoblast fusion that supports bipolar membrane alignment and temporally regulates trafficking of vesicles to the nascent fusion sites during skeletal muscle myoblast differentiation.  相似文献   

19.
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.  相似文献   

20.
Mutants that have been selected for defects in phagocytic recognition, adhesion, and vegetative cell-cell cohesion were found to be larger and more highly multinucleate than their parent strain. This defect is associated with the complex mutant phenotype of these mutants since revertants of the mutants coordinately acquire the wild-type phenotype for all of the defects. The larger size and multinuclearity were due to a high frequency of failure of cytokinesis in cells of wild-type size. This was shown by purifying the small cells in mutant populations and observing their growth and cell division. The mutant phenotype is more penetrant during axenic growth. Most of the mutants are not multinucleate when grown on bacteria. Recently, new mutants have been isolated that are also multinucleate when grown on bacteria by a strong selection procedure for non-adhesion to tissue culture dishes. The pleiotropic mutant phenotype and the greater penetrance of the mutant phenotype in axenic culture can be explained by hypothesizing a deficiency in a membrane component of the actomyosin motor that is involved in all of the processes defective in the mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号