首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the pattern of protein synthesis during wing disc pattern regulation. Although in vivo culture dramatically alters the pattern of abundant protein synthesis in wing discs, only one protein--RG38--changes specifically in response to pattern regulation. This polypeptide, previously identified as being nonuniformly distributed in wing and haltere discs, is synthesized in a graded distribution across the wing disc. During wing disc pattern regulation, it acts as a molecular marker for regeneration of particular wing disc regions. Thus, the rate of RG38 synthesis increases during regeneration (by fragments with initial low levels) with kinetics that parallel those for regeneration as scored by the presence of adult cuticular structures.  相似文献   

2.
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.  相似文献   

3.
For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly throughout the disc, even though Decapentaplegic (Dpp), a key inducer of growth, forms a gradient. Here, we present a model for the control of growth in the wing imaginal disc, which can account for the uniform occurrence and termination of growth. A central feature of the model is that net growth is not only regulated by growth factors, but by mechanical forces as well. According to the model, growth factors like Dpp induce growth in the center of the disc, which subsequently causes a tangential stretching of surrounding peripheral regions. Above a certain threshold, this stretching stimulates growth in these peripheral regions. Since the stretching is not completely compensated for by the induced growth, the peripheral regions will compress the center of the disc, leading to an inhibition of growth in the center. The larger the disc, the stronger this compression becomes and hence the stronger the inhibiting effect. Growth ceases when the growth factors can no longer overcome this inhibition. With numerical simulations we show that the model indeed yields uniform growth. Furthermore, the model can also account for other experimental data on growth in the wing disc.  相似文献   

4.
Total RNA derived from the imaginal discs of Drosophila melanogaster was translated in vitro, and the polypeptide products electrophoresed on two-dimensional gels. In agreement with previously published examinations of imaginal disc protein synthesis and content, we can detect no reproducible differences in abundant mRNA populations between different disc types (foreleg and wing). Differences can be found, however, between imaginal discs and other tissues. We also present evidence for a nonuniformly distributed wing disc mRNA.  相似文献   

5.
Summary We have used our imaginal disc cell lines to carry out in vitro studies on the cell-cell and cell-substrate adhesion of Drosophila leg and wing disc cells. Single cells were allowed to reaggregate in roller culture, and this process was found to be partially dependent on the presence of magnesium and calcium ions in the suspension medium. Varying rates of reaggregation were observed in cells from different stages of a passage, correlating with the pattern of morphogenesis which occurs during the passage. We have demonstrated that cloned cell lines can be produced showing certain selected characteristics, such as reduced cell adhesiveness.  相似文献   

6.
Upon fragmentation of a leg imaginal disc, cells near parts of the wounded surface are reprogrammed and form a blastema. This occurs without a change in fate and without the direct contact of the two wounded surfaces (G. H. Karpen and G. Schubiger, Nature (London) 294, 744-747, 1981). Two phases of the cell cycle have now been analyzed for several areas of disc fragments prior to and during wound healing. A mitotic index was used to compare the location of cell division, and autoradiography was used to reveal patterns of DNA synthesis. In contrast to the uniform division pattern in noncultured fragments, more dividing cells were observed near the two wound surfaces after 1 day of in vivo culture. During the second day, wound healing began and mitotic activity increased dramatically near both wound areas, and decreased in distant areas. Three and a half days of culture led to more complete wound closure and only cells on one site continued to show the highest frequency of labeled cells. It is concluded that changes in patterns of DNA synthesis and an increase in cell division begin prior to wound closure. This proliferation is consistent with the morphological changes and regulative behavior observed. In addition, the role of compartmental identity during regulation was tested. After wound closure began an increase in mitotic activity near wounds in the anterior compartment was observed whereas such an increase in division level was not seen in posterior cells near a wound.  相似文献   

7.
Clonal analysis was used to study the regulative behavior of cells in Drosophila imaginal leg discs. Such studies performed during normal development of the leg have revealed a clonal restriction known as the anterior-posterior compartment boundary (E. Steiner, 1976, Wilhelm Roux Arch. Entwicklungsmech. Organismen180, 9–30). When we tested a regulating fragment that contained cells from both anterior and posterior compartments this clonal restriction was maintained in the original fragment. However, in material produced by regulation, clones of cells induced at the time of fragmentation differentiated anterior and posterior structures. Clonal restriction was observed in the regulated material when clones were induced during in vivo culture. We deduced the position of the dividing cells that contributed to regulative growth from the positions of the clones within the differentiated disc tissue. We observed that initially the majority of dividing cells originated from and were localized to an area close to a region of the wound, resembling a blastema. As regulation proceeded, a localization of dividing cells was maintained. However, the blastema changed its position from the original material into the regulated part.  相似文献   

8.
The Drosophila wing imaginal disc is subdivided into notum, hinge and blade territories during the third larval instar by formation of several deep apical folds. The molecular mechanisms of these subdivisions and the subsequent initiation of morphogenic processes during metamorphosis are poorly understood. Here, we demonstrate that the Dorsocross (Doc) T-box genes promote the progression of epithelial folds that not only separate the hinge and blade regions of the wing disc but also contribute to metamorphic development by changing cell shapes and bending the wing disc. We found that Doc expression was restricted by two inhibitors, Vestigial and Homothorax, leading to two narrow Doc stripes where the folds separating hinge and blade are forming. Doc mutant clones prevented the lateral extension and deepening of these folds at the larval stage and delayed wing disc bending in the early pupal stage. Ectopic Doc expression was sufficient to generate deep apical folds by causing a basolateral redistribution of the apical microtubule web and a shortening of cells. Cells of both the endogenous blade/hinge folds and of folds elicited by ectopic Doc expression expressed Matrix metalloproteinase 2 (Mmp2). In these folds, integrins and extracellular matrix proteins were depleted. Overexpression of Doc along the blade/hinge folds caused precocious wing disc bending, which could be suppressed by co-expressing MMP2RNAi.  相似文献   

9.
For an appendage to regenerate distal elements, it has been thought that the stump must contain a full set of circumferential positional information. We have shown that this rule is not binding for tarsus regeneration in the male foreleg imaginal disc of Drosophila melanogaster. Distal transformation was not restricted to fragments containing complete proximal segments, but was also observed in pieces with small or even substantial deficiencies that were not regenerated in their proximal segments.  相似文献   

10.
Teleman AA  Cohen SM 《Cell》2000,103(6):971-980
The secreted signaling protein Dpp acts as a morphogen to pattern the anterior-posterior axis of the Drosophila wing. Dpp activity is required in all cells of the developing wing imaginal disc, but the ligand gradient that supports this activity has not been characterized. Here we make use of a biologically active form of Dpp tagged with GFP to examine the ligand gradient. Dpp-GFP forms an unstable extracellular gradient that spreads rapidly in the wing disc. The activity gradient visualized by MAD phosphorylation differs in shape from the ligand gradient. The pMAD gradient adjusted to compartment size when this was experimentally altered. These observations suggest that the Dpp activity gradient may be shaped at the level of receptor activation.  相似文献   

11.
Fragments of imaginal discs of Drosophila regenerate or duplicate when they are cultured in vivo. This pattern regulation is generally believed to occur by epimorphosis. That is, cells at the wound edge proliferate and fill in the missing positional values by intercalation. It is suggested that no respecification of the positional values of cells away from the wound edge occurs. I report here data on fragment growth during culture that are incompatible with the epimorphic model. I argue that both respecification of existing cells and the generation of new cells by growth are involved in pattern regulation.  相似文献   

12.
Fragments of the imaginal wing disc of Drosophila melanogaster were cultured in adult hosts before transfer to larvae for metamorphosis. Transdetermination occurred only after at least 2 weeks of culture in vivo, producing structures of the leg, antenna, head, and thoracic spiracle. Details of the transdetermined structures and their locations with respect to normal wing disc structures are reported. We present evidence suggesting that regulation can occur between the wing and the second leg imaginal discs, and we propose that many transdeterminations which involve neighboring discs may result from such interdisc regulation.  相似文献   

13.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

14.
The neural phenotype of an imaginal disc degenerate mutant l(1)d deg-3 was studied in histological sections. The mutant larvae showed severe abnormalities in the imaginal neural development. Gynandromorphs, which are composed of genetically mutant and nonmutant cells, were generated and analyzed as late larvae. The results of mosaic analysis were consistent with l(1)d deg-3 gene acting autonomously in the imaginal disc and imaginal neural cells. The optic lobe development patterns observed in the larval mosaics provided evidence for an eye disc-optic lobe interaction during the late third instar larval stage.  相似文献   

15.
Previous attempts to study sorting out of Drosophila imaginal disc cells have been hampered by an inability to thoroughly dissociate these cells and the need to use cuticular markers which require several days of in vivo culture. This study overcomes these limitations by using a new dissociation procedure and a genetic marker for undifferentiated cells, the succinate dehydrogenase8 (sdh8) mutation. Dissociated and reaggregated cells from wing and leg imaginal discs segregated or "sorted out" from one another after only 24 hr of in vivo culture. It was also found that leg cells from different body segments may sort out, but to a lesser degree than wing and leg cells. Mixtures of wing and haltere cells did not sort out, in contrast to previous reports. These results constitute the first unambiguous study of sorting out with Drosophila imaginal disc cells and indicate that dorsally situated imaginal cells share a recognition specificity which is different from that of ventral imaginal cells.  相似文献   

16.
Summary Drosophila imaginal disc cell lines were used to investigate various aspects of cellular adhesion in vitro. The distribution of PS integrins and their involvement in cell-cell and cell-substrate adhesion were assessed with the monoclonal antibody aBG-1 against the βPS subunit, and both forms of adhesion were found to be impeded by the presence of the antibody. Adhesion to a number of extracellular matrix components was investigated, and the cells were found to adhere to human fibronectin. This adhesion was inhibited by aBG-1. The adhesion molecule fasciclin III was also found in these cells. Given that the cells are competent to perform cell-cell and cell-substrate adhesion, it was thought that apical basal polarity might be restored when other suitable conditions were provided, i.e., an artificial basement layer with feeder cells to provide nutrients basally to the cells, and some features of apical-basal morphology were seen in cells cultured under these conditions.  相似文献   

17.
18.
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.  相似文献   

19.
20.
Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling   总被引:5,自引:0,他引:5  
Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate apterous (ap) expression, thereby segregating the wing disc into D (ap-ON) and V (ap-OFF) compartments. Similarly, we demonstrate that EGFR signaling directs the expression of Iroquois Complex (Iro-C) genes in prospective notum cells, rendering them distinct from, and immiscible with, neighboring wing cells. However, EGFR signaling acts only early in development to heritably activate ap, whereas it is required persistently during subsequent development to maintain Iro-C gene expression. Hence, as the disc grows, the DV compartment boundary can shift ventrally, beyond the range of the instructive EGFR signal(s), in contrast to the notum-wing boundary, which continues to be defined by EGFR input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号