首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In one series of experiments (in vitro), distal portions of cone-stage newt forelimb blastemata were cultured, transfilter to a pair of dorsal root ganglia, both with and without apical epidermis. At the termination of the culture period, the epidermis of the epidermis-intact explants was removed leaving the mesenchymal portion of the blastema for a comparative analysis of cellular activities influenced by the apical epidermal cap (AEC). Blastema explants, in which the AEC had been removed prior to explantation (epidermis free), exhibited decreased DNA synthetic activity and a significantly lower overall mitotic index than the mesenchymal portions of their epidermisintact counterparts. Moreover, cartilage nodules were precociously formed in the epidermis-free explants. In a second series of experiments (in vivo), the distal portion of a cone-stage blastema was removed and the wound epithelium was permitted to reestablish itself over the proximal blastema tissue. The mitotic index of the originally proximal (now distal) mesenchyme, increased as a function of time after reestablishment of the AEC and cartilage differentiation was suppressed, when compared with proximal AEC-free blastema controls. We propose that the developmental pathway (i.e., division or differentiation) followed by blastema cells is influenced by the AEC; the intact AEC provides the “division signal” for cycling cells, which differentiate in its absence. A mechanism for the normal proximodistal progression of cartilage differentiation, in terms of the AEC influence, is discussed.  相似文献   

2.
Summary Regeneration blastemata of adult newt forelimbs were cultured transfilter to dorsal root ganglia on extremely low porosity (0.05 μm) filters. Mitotic index profiles in these blastemata were compared with those obtained using filters of greater porosity (0.45 μm). In the above experiments nerves and blastema tissue were separated by 5 or 25 μm, i.e., the thickness of the respective filters. The results show that the transfilter mitogenic effect of the nerves was retained when the lower pore size filters were used. In addition, sensory ganglia grown at the bottom of a culture well, separated from the blastema explants by a distance of approximately 2 mm, were nevertheless able to promote blastema cell proliferation. The ganglia can thus be considered to be providing a “sustained conditioning” of the medium with neuromitogenic factor(s). This study also shows that nerves can promote blastema cell mitosis, although cell-to-cell contact between nerves and responding cells was precluded. This work was supported by National Science and Engineering Research Council (NSERC) Grants A6933 to M. Globus and A9753 to S. Vethamany-Globus.  相似文献   

3.
My work has shown that the neural dependence of the limb regenerate(blastema) for growth, is retained in vitro and it follows thenormal in vivo pattern. Implanted dorsal root ganglia promotelocalized growth in cultured blastemata whereas in the absenceof nerves little or no development ensues. Our transfilter studiesshow that the neurotrophic effect, which appears to be mediatedby a factor capable of transmission through thin filters oflow porosity, is manifested in a proximo-distal gradient ofmitotic activity which diminishes with distance from the nervesource. This mitogenic effect appears to require at least 48hr for expression, which corresponds to one revolution of thecell cycle. In the absence of nerves, both DNA synthesis andmitotic index in the blastema decline significantly; however,a basal level is maintained which may be nerve independent.In this context and in the light of pertinent recent literature,we present a model in which nerves, the apical epidermis andinsulin (tripartite control) all play essential roles in themitotic cycle.  相似文献   

4.
After amputation of a newt limb, a blastema forms on the amputation plane and later differentiates to regenerate all the missing parts of the limb. Proliferation of blastema cells is under the control of severed nerves which deliver a 'neurotrophic factor' (NTF) of unknown nature. In order to characterize this factor we use a primary culture of blastema mesenchymal cells; changes in mitotic index after 48-h colchicine treatment indicate mitogenic activity of potential growth substances. These cells, which are stimulated by nerve extracts (mitotic index X 6), were tested with two purified growth factors extracted from bovine retina or brain (EDGF I = basic FGF and EDGF II = acidic FGF). We show that these two growth factors stimulate proliferation of blastema cell cultures in a dose-dependent manner. Maximal stimulation was obtained at 3 pM for EDGF I (mitotic index X 5.7) or 300 pM for EDGF II (mitotic index X 4.9). So it appears that these two growth factors have a mitogenic activity on blastema mesenchymal cells similar to that obtained with nerve extracts. The fact that two different growth factors can stimulate these cells raises the question of whether both are present in NTF and/or whether there are receptors to both EDGF I and EDGF II on mesenchymal cell membranes.  相似文献   

5.
Regulation of blastema cell proliferation during amphibian limb regeneration is poorly understood. One unexplained phenomenon is the relatively low level of active cell cycling in the adult newt blastema compared to that of larval axolotls. In the present study, we used ganglia implantation as a means of "superinnervating" normally innervated adult newt blastemas to test whether blastema cell subpopulations are responsive to nerve augmentation. The effectiveness of implanted ganglia to provide neurotrophic stimulation was demonstrated in denervated blastemas. Blastemas implanted with 2 dorsal root ganglia and simultaneously denervated 14 days after amputation exhibited control levels of cell cycle activity 6 days later, as measured by 3H-thymidine pulse labeling. Denervated blastemas that were sham-operated or implanted with pituitary glands exhibited cell-cycle declines similar to those of denervated blastemas without implanted ganglia. Thus, 2 implanted ganglia provide neurotrophic stimulation equivalent to that of the normal nerve supply. Dorsal root ganglia implanted into normally innervated blastemas, which should effectively double neurotrophic activity to the blastema, had no effect on cell-cycle activity, innervated blastemas implanted with ganglia for 6 days exhibited pulse labeling indices similar to those of normally innervated blastemas. These data indicate that neurotrophic stimulation is not normally limiting in innervated limbs, and that some other factor, whether extrinsic or intrinsic to blastema cells, accounts for the relatively low level of active cell cycling in the adult newt blastema.  相似文献   

6.
Summary The presence of a mitogenic activity in limb blastemas of axolotls was detected in crude extracts of blastemas at the mid-bud stage. The mitogenicity of the extracts was estimated from the mitotic index of blastema cells grown for 6 days in the presence of limb blastema extracts, with colchicine present for the last 2 days. All the extracts tested (whole blastema, blastemal mesenchyme, epidermal cap) significantly enhanced proliferation of blastema cells. The highest stimulation factors we observed were 7 × with 7 g protein/ml whole blastema extracts, 5.2 × with 14 g/ml blastemal mesenchyme extracts, and 11 x with 3.5 g/ml epidermal cap extracts. Hence the epidermal cap extracts appeared to be the most mitogenic. Extracts from the blastemal mesenchyme, although less mitogenic than the epidermal cap extracts, were more potent than nerve extracts [Albert P, Boilly B (1986) Biol Cell 58:251–262]. These results are discussed with regard to the production of growth factors during limb regeneration.  相似文献   

7.
The timetable of cell generation, neuronal death and neuron numbers in the fused proximal glossopharyngeal (IX) and vagal (X) ganglion and distal IX and X ganglia were studied in normal and nerve growth factor (NGF) treated chick embryos. 3H-thymidine was injected between the 3rd and 7th days of incubation and embryos sacrificed on the 11th day. Neurons in the distal IX and X ganglia were generated between the 2nd and 5th days of incubation, the peak mitotic activity occurring on the 4th and 3rd days, respectively. Neurons of the proximal IX and X ganglion were generated between the 4th and 7th days, with maximum neuron generation on the 5th day of incubation. Counts of neurons in the 3 ganglia between the 5th and 18th days of incubation showed a maximum of 22,000 on the 8th day in the proximal IX and X ganglion and this decreased to 12,000 by the 13th day. In the distal IX ganglion, the neuron number decreased by 44% from 4,500 on the 6th day to 2,500 by the 11th day. A similar decrease of 43% was found in the distal X ganglion, the neuron number falling from 11,500 on the 7th day to 6,500 by the 11th day of incubation. Neuronal cell death in these ganglia extended from the 5th to the 12th day of incubation, maximum cell death occurring at or after the cessation of mitotic activity. NGF administration from the 5th to the 11th day of incubation did not have a measurable effect on the neurons of proximal IX and X and distal IX ganglia, but increased neuronal survival by 30% in the distal X ganglion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Urodele amphibians can regenerate their limbs. During limb regeneration, dermal fibroblasts are transformed into undifferentiated cells called blastema cells. These dermis–blastema cells show multipotency. Such so-called endogenous reprogramming of cell differentiation is one of the main targets of amphibian limb regeneration studies. It is well recognized that nerve presence controls the initiation of limb regeneration. Accordingly, nerve factors have been sought in amphibian limb regeneration. To investigate it, a relatively new study system called the accessory limb model (ALM) was developed. Using ALM, two signaling cascades (Fgf and Gdf5 signaling) came under focus. In the present study, Growth and differentiation factor-5 (Gdf5) application to wounded skin initiated limb regeneration responses and resulted in induction of a blastema-like structure in the absence of a nerve. However, the Gdf5-induced structure showed defects as a regeneration blastema, such as absence of detectable Prrx1 expression by in situ hybridization. The defects could be remedied by additional Fibroblasts growth factor (Fgf) inputs. These two inputs (Gdf5 and Fgfs) were sufficient to substitute for the nerve functions in the induction of limb regeneration. Indeed, Fgf2, Fgf8, and Gdf5 applications with the contralateral skin graft resulted in limb formation without nerve supply. Furthermore, acquisition of cartilage differentiation potential of dermal fibroblasts was tested in an in vivo and in vitro combination assay. Dermal fibroblasts cultured with Gdf5 were difficult to participate in cartilage formation when the cultured cells were grafted into cartilage forming region. In contrast, dermal fibroblasts cultured with Fgf2 and Fgf8 became easier to participate into cartilage formation in the same procedure. These results contribute to our understanding of molecular mechanisms of the early phase of amphibian limb regeneration.  相似文献   

9.
The distribution and origin of substance P immunoreactive nerve elements have been studied in the guinea-pig prevertebral ganglia by the indirect immunohistochemical technique, using a monoclonal antibody to substance P. Non-varicose substance P immunoreactive nerve fibres enter or leave the ganglia in all nerves associated with them, traversing the ganglia in larger or smaller bundles. Networks, mainly single-stranded, of varicose substance P immunoreactive nerve fibres also permeate the ganglia, forming a loose meshwork among the neurons. Similar networks are present in the lumbar paravertebral ganglia. In all these ganglia, neuronal somata do not in general show substance P immunoreactivity. The various nerves connected with the inferior mesenteric ganglion have been cut, in single categories and in various combinations, and the ganglion examined, after intervals of up to six days. Cutting the colonic or hypogastric nerves, which connect the ganglion with the hindgut and pelvic organs, leads to accumulation of substance P immunoreactive material in their ganglionic stumps, extending retrogradely to intraganglionic non-varicose fibres traceable through into the intermesenteric and lumbar splanchnic nerves. There is some local depletion of intraganglionic varicose networks. Cutting the intermesenteric nerve, which connects the coeliac-superior mesenteric ganglion complex with the ganglion, leads to accumulation of substance P immunoreactive material in its cranial stump and depletion of its distal stump; a minimal depletion is detectable in the inferior mesenteric ganglion itself. Cutting the lumbar splanchnic nerves, which connect the ganglion with the upper lumbar spinal cord and dorsal root ganglia, leads to accumulation of substance P immunoreactive material in their proximal stumps and total depletion of their distal, ganglionic stumps; in the ganglion there is subtotal loss of non-varicose substance P immunoreactive fibres and of varicose nerve networks, and the few surviving non-varicose fibres are traceable across the ganglion from the intermesenteric nerve to the colonic and hypogastric nerves. Cutting the intermesenteric and lumbar splanchnic nerves virtually abolishes substance P immunoreactive elements from the ganglion within three days postoperatively. It is concluded that these arise centrally to the ganglion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Explant and dissociated neuron-enriched cultures of nodose ganglia (inferior or distal sensory ganglion of the Xth cranial nerve) were established from chick embryos taken between embryonic Day 4 (E4) and Day 16 (E16). The response of each type of culture to nerve growth factor (NGF) was examined over this developmental range. At the earliest ages taken (E4-E6), NGF elicited modest neurite outgrowth from ganglion explants cultured in collagen gel for 24 hr, although the effect of NGF on ganglia taken from E4 chicks was only marginally greater than spontaneous neurite extension from control ganglia of the same developmental age. The response of nodose explants to NGF was maximal at E6-E7, but declined to a negligible level in ganglia taken from E9-E10 or older chick embryos. In dissociated neuron-enriched cultures, nodose ganglion neurons were unresponsive to NGF throughtout the entire developmental age range between E5 and E12. In contrast to the lack of effect of NGF, up to 50% of nodose ganglion neurons survived and produced extensive neurites in dissociated cultures, on either collagen- or polylysine-coated substrates, in the presence of extracts of late embryonic or early posthatched chick liver (E18-P7). Antiserum to mouse NGF did not block the neurotrophic activity of chick (or rat or bovine) liver extracts. Whether cultured with chick liver extract alone or with chick liver extract plus NGF, nodose ganglion neurons taken from E6-E12 chick embryos and maintained in culture for 2 days were devoid of NGF receptors, as assessed by autoradiography of cultures incubated with 125I-NGF. Under similar conditions 70-95% of spinal sensory neurons (dorsal root ganglion--DRG) were heavily labeled. 2+  相似文献   

11.
Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.  相似文献   

12.
In both larval and adult urodele amphibians, limb blastema formation requires the presence of an adequate nerve supply. In previous research, we demonstrated that the hindlimb of early Xenopus laevis larvae formed a regeneration blastema even when denervated, while the denervated limb of late larvae did not. We hypothesized that the nerve-independence was due to the autonomous synthesis of a mitogenic neurotrophic-like factor by undifferentiated limb bud cells. In this paper, we demonstrate that fgf-2 mRNA is present in larval limb tissues and that its level is correlated to the extent of mesenchymal cells populating the limb: in early limbs, fgf-2 mRNA is present at high levels all over the limb, while, in late limbs, the fgf-2 expression is low and detectable only in the distal autopodium. After denervation, fgf-2 mRNA synthesis increases in amputated early limbs but not in amputated late limbs. The implantation of anti-FGF-2 beads into amputated early limbs hardly lowers the mitotic activity of blastema cells. However, FGF-2 beads implanted into the blastema of late limbs prevent the denervation-induced inhibition of mitosis and oppose blastema regression. Our data indicate that FGF-2 is a good candidate for the endogenous mitogenic factor responsible for blastema formation and growth in amputated and denervated early limbs. However, in amputated late limbs, the very limited fgf-2 expression is not sufficient to promote blastema formation in the absence of nerves.  相似文献   

13.
Urodele amphibians are the only vertebrates that can regenerate their limbs throughout their life. The critical feature of limb regeneration is the formation of a blastema, a process that requires an intact nerve supply. Nerves appear to provide an unidentified factor, known as the neurotrophic factor (NTF), which stimulates cycling of blastema cells. One candidate NTF is glial growth factor (GGF), a member of the neuregulin (NRG) growth factor family. NRGs are both survival factors and mitogens to glial cells, including Schwann cells. All forms of NRGs contain an EGF‐like domain that is sufficient to activate NRG receptors erbB2, erbB3, and erbB4. To investigate the involvement of neuregulin in newt limb regeneration, we cloned and characterized one neuregulin isoform, a neuregulin with a cysteine‐rich domain (CRD‐NRG), from newt (Notophthalmus viridescens) spinal cord. Results of in situ hybridization showed that the newt CRD‐NRG is highly expressed in dorsal root ganglia and spinal cord neurons that innervate the limbs. We also demonstrated the biological activity of recombinant human GGF2 (rhGGF2) in urodele limb regeneration. When rhGGF2 was injected into denervated, nerve‐dependent axolotl blastemas, the labeling index (LI) of blastema cells was maintained at a level near to that of control, innervated blastemas, whereas without rhGGF2 the LI decreased significantly. In another experiment, rhGGF2 was delivered into denervated, nerve‐dependent blastemas either by direct infusion into blastemas or by injection into the intraperitoneal cavity. The denervated blastemas were rescued into a regeneration response. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 150–158, 2000  相似文献   

14.
Summary In order to study mitogenic control during axolotl limb regeneration, we have developed a primary blastema cell culture as a very sensitive bioassay for blastema mitogens. Transferrin, an iron-binding glycoprotein which has been shown to be the neurotrophic factor for muscle cells, is the mitogen which has been analysed in the present report. Addition of approximately 2 g human transferrin/ ml of serum-free culture medium enhances blastema cell proliferation 11-fold over control levels and 2-fold over that produced by the addition of nerve extracts or purified growth factors extracted from nerve tissues (basic and acidic fetal growth factor, FGF). At a higher concentration (20 g/ml), transferrin alone has no mitogenic effect unless the medium is also supplemented with FeCl3 (100 M). The results are discussed with regard to the sensitivity of the blastema cell culture bioassay and in the context of the neurotrophic theory of urodele limb regeneration.  相似文献   

15.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

16.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

17.
18.
Interactions between the limb stump and the developing regenerate were studied in the limbs of adult newts, Notophthalmus viridescens. Forelimb blastemas at various stages were transplanted to the contralateral forelimb such that the anterior-posterior axes of stump and blastema were opposed. The blastemas were transplanted either from a proximal to distal, distal to proximal, proximal to proximal, or distal to distal level limb stump. The results indicate that at the earliest stage studied the anterior-posterior axis of the blastema is established but is not stable. An interection between the stump and blastema at this early stage results in the production of a variety of limbs intermediate in polarity between the graft and the stump. At all later stages, the original anterior-posterior axis of the blastema can be retained, although under certain grafting conditions the stump can still exert considerable influence over the anterior-posterior organization of the final regenerate. In those circumstances in which the blastema retains its original handedness, the interaction between stump and blastema results in the production of separate anterior and posterior supernumerary regenerates.The results of transplanting proximal blastemas to a distal limb level indicate that the proximal boundary of the blastema has been established by the earliest stage studied, leading to the production of limbs with serially duplicated segments. However, irrespective of the stage of a blastema transplanted from a distal to proximal level, there are no deleted structures in the proximal-distal axis of the resulting limb. From both histological examination of transplanted regenerates and the arrangement of skeletal elements of the resulting limbs, it is postulated that the stump plays an important role in the production of the intercalary regenerate.  相似文献   

19.
Primary cultures of mesenchymal cells of axolotl limb blastemas provide a very sensitive in vitro bioassay for studying nerve dependence of newt regeneration. These cells can be stimulated by crude spinal cord extracts of non-amputated animals in a dose-dependent manner up to 60 micrograms protein/ml of culture medium; at this concentration the mitotic index is increased 4-fold. Spinal cord extracts of axolotls 14 days after forelimb amputation (i.e., late bud stage) are more efficient in stimulating blastema cell proliferation (+50%) than extracts of axolotls 7 days after forelimb amputation (i.e., early bud stage) or of axolotls without amputation. In a similar manner, spinal cord extracts of young axolotls 14 days after forelimb amputation, are more stimulatory than older axolotls 14 d after forelimb amputation which regenerate only a very small blastema during the same time. It appears that spinal cord mitogenic activity is enhanced after limb amputation, probably in correlation with blastema cell requirements for limb regeneration.  相似文献   

20.
A highly upregulated gene during tail regeneration in lizards is Wnt2b, a gene broadly expressed during development. The present study examines the distribution of Wnt proteins, most likely wnt2b, by western blotting and immunofluorescence in the blastema-cone of lizards using a specific antibody produced against a lizard Wnt2b protein. Immunopositive bands at 48–50 and 18 kDa are present in the regenerative blastema, the latter likely as a degradation product. Immunofluorescence is mainly observed in the wound epidermis, including in the Apical Epidermal Peg where the protein appears localized in intermediate and differentiating keratinocytes. Labeling is more intense along the perimeter of keratinocytes, possibly as a secretory product, and indicates that the high epidermal proliferation of the regenerating epidermis is sustained by Wnt proteins. The regenerating spinal cord forms an ependymal tube within the blastema and shows immunolabeling especially in the cytoplasm of ependymal cells contacting the central canal where some secretion might occur. Also, regenerating nerves and proximal spinal ganglia innervating the regenerating blastema contain this signaling protein. In contrast, the blastema mesenchyme, muscles and cartilage show weak immunolabeling that tends to disappear in tissues located in more proximal regions, close to the original tail. However, a distal to proximal gradient of Wnt proteins was not detected. The present study supports the hypothesis that Wnt proteins, in particular Wnt2b, are secreted by the apical epidermis covering the blastema and released into the mesenchyme where they stimulate cell multiplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号