首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunomagnetic separation was coupled with quantum dot (QD) labeling for the rapid, selective and sensitive detection of Escherichia coli in water samples. The target bacteria were recovered from the solution by antibody-coated paramagnetic beads, and sandwich complexes were formed by using secondary antibodies labeled with QDs. The fluorescence intensities, as a result of the capturing of different concentrations of bacteria, were measured, and a linear correlation ( R 2  =  0.976) was obtained between log E. coli concentration ( x ) and the intensity ( y ) with a regression model of y =  26.9x  +  41.1 in a working range of 8.9  ×  101 and 1.9  ×  106 cfu/mL. The selectivity of the developed sensor was examined with Enterobacter aerogenes and Enterobacter dissolvens, which did not produce any significant response. The ability of the immunoassay to detect E. coli in real water samples was investigated and the results were compared with the experimental results from plate-counting methods. A good agreement was observed between the QD-enhanced detection and plate counting.

PRACTICAL APPLICATIONS


In this study, a rapid, sensitive and convenient fluorometric assay based on the immunomagnetic separation (IMS) and quantum dot (QD) labeling was employed for the detection of Escherichia coli in water samples. The incorporation of QDs into fluorometric immunoassay techniques has various advantages over labeling with organic dyes and enzymes. In addition, the spectroscopic properties of QDs can allow multiplexed immunoassays coupled with IMS for bacteria detection, which will be investigated in further studies. Here we showed that QD labeling is a promising tool for the detection of E. coli in real water samples containing different components with a lower detection limit.  相似文献   

2.
In this study, we demonstrated the simultaneous detection of Escherichia coli and Salmonella enteritidis, by coupling immunomagnetic separation (IMS) with quantum dots (QDs) labeling. QDs having different emission wavelengths were conjugated with anti- E. coli and anti- Salmonella antibodies. QD–antibody conjugates were used to label immunomagnetically separated bacteria and the fluorescence intensities were measured for enumerations of both species. The concentrations of primary antibodies used in IMS, the ratio of QDs to antibodies during the conjugation and the concentration of QD–antibody conjugates used in labeling were optimized to enhance the sensitivity of the assay. After labeling bacteria with QDs, the quenching observed between bead–bacteria complex and QDs was eliminated by separating QDs from the complex using sodium dodecyl sulfate solution. The fluorescence intensities due to the capturing of different concentrations of bacteria were measured and the working ranges were found to be 5 × 102 to 5 × 105 cfu/mL for E. coli and 4  ×  102 to 4  ×  105 cfu/mL for S. enteritidis .

PRACTICAL APPLICATIONS


In this study, antibody-conjugated multicolor quantum dots (QDs) were used for simultaneous detection of Escherichia coli and Salmonella enteritidis . The results of this study indicate that QD labels can be used in multiplex, rapid and selective detection of bacteria with detection limits comparable with those of many novel methods in cases where the assay conditions are optimized. Furthermore, the assay can be modified for the simultaneous detection of more than two species through using QD labels having different emission wavelengths.  相似文献   

3.
Mi C  Wang Y  Zhang J  Huang H  Xu L  Wang S  Fang X  Fang J  Mao C  Xu S 《Journal of biotechnology》2011,153(3-4):125-132
Quantum dots (QDs) were prepared in genetically engineered Escherichia coli (E. coli) through the introduction of foreign genes encoding a CdS binding peptide. The CdS QDs were successfully separated from the bacteria through two methods, lysis and freezing-thawing of cells, and purified with an anion-exchange resin. High-resolution transmission electron microscopy, X-ray diffraction, luminescence spectroscopy, and energy dispersive X-ray spectroscopy were applied to characterize the as-prepared CdS QDs. The effects of reactant concentrations, bacteria incubation times, and reaction times on QD growth were systematically investigated. Our work demonstrates that genetically engineered bacteria can be used to synthesize QDs. The biologically synthesized QDs are expected to be more biocompatible probes in bio-labeling and imaging.  相似文献   

4.
Water-soluble, biological-compatible, and excellent fluorescent CdSe/CdS quantum dots (QDs) with L-cysteine as capping agent were synthesized in aqueous medium. Fluorescence (FL) spectra, absorption spectra, and transmission electron microscopy (TEM) were employed to investigate the quality of the products. The interactions between QDs and bovine serum albumin (BSA) were studied by absorption and FL titration experiments. With addition of QDs, the FL intensity of BSA was significantly quenched which can be explained by static mechanism in nature. When BSA was added to the solution of QDs, FL intensity of QDs was faintly quenched. Fluorescent imaging suggests that QDs can be designed as a probe to label the Escherchia coli (E. coli) cells. These results indicate CdSe/CdS/L-cysteine QDs can be used as a probe for labeling biological molecule and bacteria cells.  相似文献   

5.
Mycobacteria have always proven difficult to identify due to their low growth rate and fastidious nature. Therefore molecular biology and more recently nanotechnology, have been exploited from early on for the detection of these pathogens. Here we present the first stage of development of an assay incorporating cadmium selenide quantum dots (QDs) for the detection of mycobacterial surface antigens. The principle of the assay is the separation of bacterial cells using magnetic beads coupled with genus-specific polyclonal antibodies and monoclonal antibodies for heparin-binding hemagglutinin. These complexes are then tagged with anti-mouse biotinylated antibody and finally streptavidin-conjugated QDs which leads to the detection of a fluorescent signal. For the evaluation of performance, the method under study was applied on Mycobacterium bovis BCG and Mycobacterium tuberculosis (positive controls), as well as E. coli and Salmonella spp. that constituted the negative controls. The direct observation of the latter category of samples did not reveal fluorescence as opposed to the mycobacteria mentioned above. The minimum detection limit of the assay was defined to 10(4) bacteria/ml, which could be further decreased by a 1 log when fluorescence was measured with a spectrofluorometer. The method described here can be easily adjusted for any other protein target of either the pathogen or the host, and once fully developed it will be directly applicable on clinical samples.  相似文献   

6.
The effect of a 20-min exposure to antibody-quantum dot (Ab-QD) conjugates on colony counts of Escherichia coli was assessed by the spread-plate method and compared with exposure to unconjugated QDs having only amine or carboxyl groups on their surfaces. Under these conditions, Ab-QD conjugates generally exhibited >90% reduction in colony-forming units as compared to untreated E. coli and E. coli treated with unconjugated QDs after incubation for as long as 41 h. The antibacterial effect of Ab-QD conjugates vs. unconjugated QDs on Salmonella enterica subsp. enterica serovar Typhimurium was also assessed by means of a disk-diffusion technique which demonstrated greater growth inhibition (approximately 3 mm greater) by Ab-QD conjugate-impregnated disks than by unconjugated-QD-only-impregnated disks at a 10-microg disk load. At a 25-microg disk load, both treatment groups exhibited nearly equal growth inhibition.  相似文献   

7.
A rapid, sensitive, and convenient method for detecting a specific bacterium was developed by using a GFP phage. Here we describe a model system that utilizes the temperate Escherichia coli-restricted bacteriophage lambda, which was genetically modified to express a reporter gene for GFP to identify the colon bacillus E. coli in the specimen. E. coli infected with GFP phage was detected by GFP fluorescence after 4-6 hr of incubation. The results show that a few bacteria in a specimen can be detected under fluorescence microscopy equipped with a sensitive cooled CCD camera. When E. coli and Mycobacterium smegmatis were mixed in a solution containing GFP phage, only E. coli was infected, indicating the specificity of this method. The method has the following advantages: 1) Bacteria from biological samples need not be purified unless they contain fluorescent impurities; 2) The infection of GFP phage to bacteria is specific; 3) The fluorescence of GFP within infected bacteria enables highly sensitive detection; 4) Exogenous substrates and cofactors are not required for fluorescence. Therefore this method is suitable for any phage-bacterium system when bacteria-specific phages are available.  相似文献   

8.
The efficiency of a monomolecular film of (3-glycidoxypropyl) trimethoxysilane (GPTS) on a shear horizontal guided (Love) acoustic wave immunosensor to detect whole Escherichia coli (E. coli) bacteria is demonstrated. Direct anti-E. coli antibodies grafting onto the sensor surface did not lead to a significant bacteria immobilisation, partially attributed to the SiO2 sensor surface roughness. An innovative method has been set up to get around this difficulty and to detect whole bacteria. It consists in grafting goat anti-mouse antibodies (GAM) onto the sensor surface in a first step and introducing E. coli bacteria mixed with anti-E. coli antibodies onto the sensor in a second step. We describe the characteristics of such a technique like sample preparation time (lower than 30 min) and temperature improvements. A 37 degrees C experimental temperature led to the fastest bacteria binding kinetic, reducing the total analysis time. This method enables to keep the specificity of the antibody/antigen interaction and provides significant results in less than 1h. This leads to a detection threshold of 10(6) bacteria/ml in a 500 microl chamber.  相似文献   

9.
The mechanism of divalent Ca2+ cation induction of Escherichia coli competence is still not fully understood, though it is a common method for introducing recombinant DNA into bacterial cells in gene engineering. Quantum dots (QDs), as a new fluorescent probe of being applied in biology research, have aroused great interest. In this paper, we explored the mechanism of E. coli competence development using QDs for the first time. Results showed that water-soluble QDs of diameter 3-4 nm could go into competent cells, but could not enter noncompetent cells. This result was further confirmed using atomic force microscopy and DNA transforming experiments, suggesting that nonphysiological, high concentrations of Ca2+ enhanced the penetrability of cell membranes so that QDs, which cannot enter cells normally due to their greater diameter (3-4 nm), can do so easily into competent cells. Therefore, we believe that, at least for E. coli, the mechanism of Ca2+-induced competence development is mediated physicochemically rather than physiologically.  相似文献   

10.
The aim of this research was to elaborate fast and sensitive method ofdetection of E. coli O157:H7 in food samples. Raw ground meat obtained from retail was artificially inoculated with low numbers of E. coli O157:H7. 18 h enrichment culture allowed pathogenic bacteria to multiply to the levels detectable in multiplex PCR. Immunomagnetic separation with magnetic beads coated with an antibody against E. coli O157:H7 were used to concentrate target bacteria and to separate PCR inhibitors. A portion of the bacterial suspension was used in a multiplex PCR to amplify eae (attaching and effacing) gene, stx (shiga toxin) genes and 90 kbp plasmid. The sensitivity of E. coli O157:H7 detection method was shown to be 1 cfu per 25 g of food sample. The total analysis can be completed within 24 h, whilst traditional methods involves enrichment, direct plating and confirmation tests with entire time at least 3 days.  相似文献   

11.
Microchannel is basic functional component of microfluidic chip and every step-forward of its construction technique has been receiving concern all over the world. The present work describes a novel, rapid and simple fabrication technique for building 3D microchannels in poly(dimethyl siloxane) (PDMS) elastomer. These microchannels were used for rapid detection of antigens (E. coli) by quantum dot (QD) based approach. Luminescent QD (CdTe) were synthesized by aqueous method and characterized using high resolution transmission electron microscopy (HRTEM), fluorescence spectroscopy and X-ray diffraction (XRD). The QDs were functionalized with anti-E. coli antibodies for immuno-detection. The reported process allowed easier and faster method of fabrication of circular 3D micochannels and demonstrated their potential use in an immuno-biosensor device.  相似文献   

12.
Polymerase chain reaction (PCR) amplification and gene probe detection of regions of two genes, lacZ and lamB, were tested for their abilities to detect coliform bacteria. Amplification of a segment of the coding region of Escherichia coli lacZ by using a PCR primer annealing temperature of 50 degrees C detected E. coli and other coliform bacteria (including Shigella spp.) but not Salmonella spp. and noncoliform bacteria. Amplification of a region of E. coli lamB by using a primer annealing temperature of 50 degrees C selectively detected E. coli and Salmonella and Shigella spp. PCR amplification and radiolabeled gene probes detected as little as 1 to 10 fg of genomic E. coli DNA and as a few as 1 to 5 viable E. coli cells in 100 ml of water. PCR amplification of lacZ and lamB provides a basis for a method to detect indicators of fecal contamination of water, and amplification of lamB in particular permits detection of E. coli and enteric pathogens (Salmonella and Shigella spp.) with the necessary specificity and sensitivity for monitoring the bacteriological quality of water so as to ensure the safety of water supplies.  相似文献   

13.
Polymerase chain reaction (PCR) amplification and gene probe detection of regions of two genes, lacZ and lamB, were tested for their abilities to detect coliform bacteria. Amplification of a segment of the coding region of Escherichia coli lacZ by using a PCR primer annealing temperature of 50 degrees C detected E. coli and other coliform bacteria (including Shigella spp.) but not Salmonella spp. and noncoliform bacteria. Amplification of a region of E. coli lamB by using a primer annealing temperature of 50 degrees C selectively detected E. coli and Salmonella and Shigella spp. PCR amplification and radiolabeled gene probes detected as little as 1 to 10 fg of genomic E. coli DNA and as a few as 1 to 5 viable E. coli cells in 100 ml of water. PCR amplification of lacZ and lamB provides a basis for a method to detect indicators of fecal contamination of water, and amplification of lamB in particular permits detection of E. coli and enteric pathogens (Salmonella and Shigella spp.) with the necessary specificity and sensitivity for monitoring the bacteriological quality of water so as to ensure the safety of water supplies.  相似文献   

14.
Contaminated vegetables have been identified as one of the principal sources of foodborne illnesses. Escherichia coli is one of the bacteria that can contaminate vegetables and cause serious foodborne disease. The development of simple and rapid assays for detection of E. coli would enable official agencies and food industries to identify contaminated foodstuffs in a timelier manner. In this work, we detected E. coli contamination in four types of vegetables using a 24 h procedure. This method is very specific, rapid and simple to use in the laboratory. Indeed, the enrichment, DNA isolation and polymerase chain reaction (PCR) amplification procedures described here can also be used for detection of E. coli in other foods.

PRACTICAL APPLICATIONS


Foodborne disease remains an important public health threat worldwide; one of the most important food safety hazards is associated with raw vegetables. Several studies have found that products can support the growth of enteric bacterial pathogens such as Salmonella , Shigella and Escherichia coli . Culture techniques are universally recognized as the standard method for detecting pathogenic bacteria in foods. Bacteria are detected and subsequently identified by growth on solid selective culture media and by analysis of metabolic properties or serotyping. This process is lengthy and may last 5–10 days or more. In our investigation, the polymerase chain reaction (PCR) detection of E. coli in vegetables was realized within 24 h. The pre-enrichment step used in this study did not have any inhibiting effect on the PCR. Therefore, it became possible to rapidly and directly detect E. coli in raw vegetables by the PCR technique just by heating samples.  相似文献   

15.
A combination of direct viable count (DVC) and fluorescent in situ hybridization (FISH) procedures was used to enumerate viable Escherichia coli in river waters and wastewaters. A probe specific for the 16S rRNA of E. coli labeled with the CY3 dye was used; enumeration of hybridized cells was performed by epifluorescence microscopy. Data showed that the method was able to accurately enumerate a minimum of 3000 viable E. coli among a large number of non-fecal bacteria. When applied to river water and wastewater samples, the DVC-FISH method gave systematically higher E. coli counts than a reference culture-based method (miniaturized MPN method). The ratio between both counts (DVC-FISH/MPN) increased with decreasing abundance of culturable E. coli indicating that the proportion of viable but non-culturable (VBNC) E. coli (detectable by the DVC-FISH procedure and not by a culture-based method) was higher in low contaminated environments. We hypothesized that the more stressing conditions, i.e. nutritional stress and sunlight effect, met in low contaminated environments were responsible for the larger fraction of VBNC E. coli. A survival experiment, in which sterile mineral water was inoculated with a pure E. coli strain and incubated, confirmed that stressing conditions induced the apparition of non-culturable E. coli detectable by the DVC-FISH procedure. The analysis of the E. coli concentration along a Seine river longitudinal profile downstream a large input of fecal bacteria by a WWTP outfall showed an increasing fraction of VBNC E. coli with increasing residence time of the E. coli in the river after release. These data suggest that the DVC-FISH method is useful tool to analyze the dynamics of fecal bacteria in river water.  相似文献   

16.
This article describes electrooptical (EO) characterization of biospecific binding between the bacterium Escherichia coli XL-1 and the phage M13K07. The electrooptical analyzer (ELUS EO), which has been developed at the State Research Center for Applied Microbiology, Obolensk, Russia, was used as the basic instrument for EO measurements. The operating principle of the analyzer is based on the polarizability of microorganisms, which depends strongly on their composition, morphology, and phenotype. The principle of analysis of the interaction of E. coli with the phage M13K07 is based on registration of changes of optical parameters of bacterial suspensions. The phage-cell interaction includes the following stages: phage adsorption on the cell surface, entry of viral DNA into the bacterial cell, amplification of phage within infected host, and phage ejection from the cell. In this work, we used M13K07, a filamentous phage of the family Inoviridae. Preliminary study had shown that combination of the EO approach with a phage as a recognition element has an excellent potential for mediator-less detection of phage-bacteria complex formation. The interaction of E. coli with phage M13K07 induces a strong and specific EO signal as a result of substantial changes of the EO properties of the E. coli XL-1 suspension infected by the phage M13K07. The signal was specific in the presence of foreign microflora (E. coli K-12 and Azospirillum brasilense Sp7). Integration of the EO approach with a phage has the following advantages: (1) bacteria from biological samples need not be purified, (2) the infection of phage to bacteria is specific, (3) exogenous substrates and mediators are not required for detection, and (4) it is suitable for any phage-bacterium system when bacteria-specific phages are available.  相似文献   

17.
Rapid and sensitive detections of microorganisms are very important for biodefence, food safety, medical diagnosis and pharmaceutics. The present study aims to find out the most proper bioactive surface preparation method to develop rapid, sensitive and selective bacteria biosensor, based on surface plasmon resonance (SPR) spectroscopy. Escherichia coli (E. coli) was used as a model bacterium and four sensing strategies in SPR were tested. Three of these strategies are antibody immobilization methods that are non-specific adsorption, specific adsorption via the avidin-biotin interaction, and immobilization of antibodies via self-assembled monolayer formation. The fourth strategy is a novel method for bacteria enumeration based on the combination of the SPR spectroscopy and immunomagnetic separation with using gold-coated magnetic nanoparticles. According to results, the most efficient SPR method is the one based on gold-coated magnetic nanoparticles. This method allows to specifically separate E. coli from the environment and to quantify rapidly without any labeling procedure. The developed method has a linear range between 30 and 3.0 × 10(4)cfu/ml, and a detection limit of 3 cfu/ml. The selectivity of the method was examined with Enterobacter aerogenes and Enterobacter dissolvens, which did not produce any significant response. The usefulness of the method to detect E. coli in real water samples was also investigated, and the results were compared with the results from plate-counting method. There was no significant difference between the methods (p>0.05).  相似文献   

18.
In this work alternative media for detection and enumeration of E. coli and coliform bacteria were compared to the reference method ISO 9308-1 (LTTC) using non-disinfected water samples with background flora. The alternative media included LES Endo agar medium (LES Endo), Colilert-18 with 51-well Quanti-tray (Colilert), Chromocult Coliform agar (CC), Harlequin E. coli/Coliform medium (HECM) and Chromogenic Escherichia coli/Coliform medium (CECM). A total of 110 samples of groundwater, bathing water and spiked water was used. Our results revealed that confirmation of coliform bacteria counts is necessary, not only on lactose-based LTTC and LES Endo media, but also on the chromogenic agar media tested, due to the growth of oxidase positive colonies. LTTC and CC media also allowed the growth of some morphologically typical coliform colonies containing gram-positive bacteria. The recovery of coliform bacteria was lower on LES Endo than on LTTC. In most cases Colilert, CC, HECM and CECM gave higher coliform counts than LTTC. The use of the LTTC medium led to higher E. coli counts than obtained with any of the alternative mediums. There are three explanations for this: (1) high sensitivity of LTTC, (2) false positives on LTTC or (3) false negatives especially with Colilert, but also with chromogenic agar media. Although LTTC was found to be a very sensitive medium, the high degree of background growth of non-disinfected waters disturbed substantially the use of it. In conclusion, our results suggest that Colilert, CC and CECM are potential alternative media for detection of coliform bacteria and E. coli from non-disinfected water.  相似文献   

19.
PCR was used to develop a method to detect Escherichia coli in surface water and soft cheese, which does not require cultivation of bacteria. DNA sequences from the ma /B operon of E. coli were amplified to specifically detect this bacterium. Samples of surface water and soft cheese naturally contaminated with E. coli from less than 100 cells per g up to several times 105cells per g were analysed by both the classical culture method and the PCR assay. Comparable results were obtained with both methods. Soft cheese samples artificially contaminated with various levels of enterotoxigenic E. coli were analysed with a second PCR test specific for the heat-labile enterotoxin type I (LTI) of E. coli. The detection limit was about 1000 bacteria per g of soft cheese. In addition, two soft cheese samples naturally contaminated with 2 times 105and 6 times 105 E. coli per g as determined by the culture method were analysed by LTI-PCR and found to contain low levels of enterotoxigenic E. coli.  相似文献   

20.
Detection of Escherichia coli in blood using flow cytometry   总被引:3,自引:0,他引:3  
A rapid method for the detection of Escherichia coli in blood has been developed. The method employs blood cell lysis, staining of bacteria with ethidium bromide, and detection of stained bacteria using flow cytometry. The detection protocol requires less than 2 h sample handling time and is not dependent on bacterial growth. This method has been applied to human donor blood specimens seeded with various E. coli concentrations and to two rabbit model systems. Bacterial detection is evident from the in vitro human blood studies at levels of 10 E. coli/ml and from in vivo rabbit model studies at less than 100 E. coli/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号