首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

2.
The enzyme guanylate cyclase is present in both particulate and soluble form in rat lung homogenates. As previously reported, the soluble enzyme can be activated by preincubation in the presence of O2. The inactive (nonactivated) soluble enzyme is also stimulated by nonionic detergents, in the order Tween 20 > Lubrol PX > Triton X-67 > Triton X-100. The activated enzyme, however, was inhibited by these detergents in the reverse order. Sodium deoxycholate and lysolecithin were potent inhibitors of both inactive and activated enzyme. The activity of the particulate enzyme was stimulated by Lubrol PX > Triton X-100 > Triton X-67 > Tween 20. At a low concentration of lysolecithin or deoxycholate the particulate activity was increased; however, when detergent/protein > 1, inhibition was seen. In the case of deoxycholate, the inhibition could be reversed if excess deoxycholate was removed either by chromatography or by forming mixed micelles with Lubrol PX; however, deoxycholate inhibition of the soluble enzyme was irreversible. The stimulation by detergents of the particulate enzyme was apparently the result of solubilization. The effects upon the activity of the soluble enzyme were interpreted in terms of a model which assumes two hydrophobic regions on the enzyme surface. The two regions differ in hydrophobicity with the more hydrophobic region only being exposed as a result of activation. Interaction of a nonionic detergent with the less hydrophobic region stimulates activity, while interaction with the more hydrophobic region results in inhibition.  相似文献   

3.
1. Guanylate cyclase of washed particles and plasma membranes showed S-shaped progress curves when titrated with either GTP or Mn2+ ions; similar results were obtained with Triton X-100-solubilized enzyme preparation from washed particles. Hill plots of these data revealed multiple metal-nucleotide and free-metal binding sites. 2. Guanylate cyclase of supernatant fractions displayed typical Michaelis-Menten properties when enzyme required excess of (free) Mn2+ (over GTP) for maximal activities; Ka (free Mn2+) was about 0.15-0.25 mM at subsaturating concentrations of GTP. 4 MnATP, MnADP, and MnGDP were found to increase the activities of both particulate and superantant enzyme, when MnGTP concentration was below saturation and free Mn2+ ion concentration was low (less than 100 muM); MnATP (50muM-1 mM) inhibited both these activities at high free Mn2+ concentration (1.5 mM) and inhibition of the particulate enzyme was greater than that of supernatant enzyme. 5. Ca2+ ions stimulated supernatant-enzyme activity; the stimulatory concentration of Ca2+ ions depended on the concentration of Mn2+ and GTP. 6. A modest stimulation of particulate guanylate cyclase by pyrophosphate (0.02-1 mM) was observed; the pyrophosphate effect appeared to be competitive with respect to GTP. At a higher concentration (2 mM), pyrophosphate produced a marked inhibition of particulate enzyme; the nature of inhibitory effect appeared complex. 7. Inorganic salts (e.g. NaCl, KCl, LiBr, NaF) produced inhibition of particulate enzyme; the degree of inhibition of Triton X-100-stimulated activity was less than that of unstimulated activity. 9. Treatment of sarcolemmal or microsomal membranes with either phospholipase C or trypsin decreased, whereas phospholipase A increased, the activity of guanylate cyclase.  相似文献   

4.
Particulate guanylate cyclase activity in the homogenate of guinea pig tracheal muscle was activated prominently after treatment with phospholipase-A or C. Even after the stimulation by phospholipases or Triton X-100, most of the activity was still associated with the particulate fraction. Phenothiazine tranquilizers and imipramine strongly inhibited the activity, whereas haloperidol did not. These results suggest that (i) particulate guanylate cyclase is associated fimly with the membrane and perturbation of the membrane architecture rather than solubilization of the enzyme is accountable for the stimulation, and (ii) stabilization of membranes in such a way that it affects the function of mucarinic cholinergic receptors inhibits the activity.  相似文献   

5.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

6.
1. The localisation and some of the properties of rabbit kidney cortex guanylate cyclase (GTP pyrophosphatase lyase (cyclizing) EC 4.6.1.2) have been studied. Upon fractionation of dissociated renal cortex, guanylate cyclase activity was preferentially enriched in fractions of pure glomeruli, where its specific activity was 44.5 times that measured in tubular fragments. Most, if not all, of the glomerular activity was found to be firmly membrane-bound, whereas the guanylate cyclase activity of the tubules was mainly soluble. Therefore, particulate guanylate cyclase activity could serve as marker enzyme for kidney glomeruli. 2. All hormones or hormone-like agents tested were without effect on kidney guanylate cyclase activity. Triton X-100 stimulated both glomerular and tubular activity. 3. Considering the high cyclic GMP forming capacity of kidney glomeruli, part of the cyclic GMP found in urine might be synthetized locally in these structures.  相似文献   

7.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

8.
S J Sulakhe  N L Leung  V Sulakhe 《Enzyme》1977,22(2):141-144
Some properties of guanylate cyclase, which was solubilized from the rabbit heart washed particles by the treatment with Triton X-100, were investigated. The solubilized enzyme activity was stimulated by Mg2+ in the presence of low (subsaturating) Mn2+ (GTP is greater than Mn2+); under these conditions, Ga2+ was inhibitory. At subsaturating MnGTP and free Mn2+, the solubilized enzyme was markedly stimulated by MnGDP and MnATP; CaGTP on the other hand, was inhibitory. These results are consistent with the view that the particulate guanylate cyclase may exist in the cell as a metalloenzyme with tightly bound Mn2+ and that Mg2+ supports its catalysis while Ca2+ as well as nucleotides may exert regulatory effects on its activity.  相似文献   

9.
The natriuretic agent amiloride induces a shift of the dose-response curve of particulate guanylate cyclase to atrial natriuretic factor (ANF) to the left. The ANF concentration for half-maximal activation of guanylate cyclase is shifted from 20 to 3 nM in the presence of 100 microM amiloride. This effect is observed with GTP*Mn2+, but not with GTP*Mg2+ as substrate. Amiloride derivatives, which inhibit a specific Na+-channel, also shift the dose-response curve to the left. These data suggest that some of the effects of amiloride may be mediated by an increased sensitivity of particulate guanylate cyclase to ANF.  相似文献   

10.
The effects on guanylate cyclase and cyclic GMP accumulation of a synthetic peptide containing the amino acid sequence and biological activity of atrial natriuretic factor (ANF) were studied. ANF activated particulate guanylate cyclase in a concentration- and time- dependent fashion in crude membranes obtained from homogenates of rat kidney. Activation of particulate guanylate cyclase by ANF was also observed in particulate fractions from homogenates of rat aorta, testes, intestine, lung, and liver, but not from heart or brain. Soluble guanylate cyclase obtained from these tissues was not activated by ANF. Trypsin treatment of ANF prevented the activation of guanylate cyclase, while heat treatment had no effect. Accumulation of cyclic GMP in kidney minces and aorta was stimulated by ANF activation of guanylate cyclase. These data suggest a role for particulate guanylate cyclase in the molecular mechanisms underlying the physiological effects of ANF such as vascular relaxation, natriuresis, and diuresis.  相似文献   

11.
Guanylate cyclase activity was determined in a 1000g particulate fraction derived from rabbit heart homogenates using Mg2+ or Mn2+ as sole cation in the presence and absence of Triton X-100. With Mg2+, very little guanylate cyclase activity could be detected in the original particulate fraction assayed with or without Triton, or in the particulate fraction treated with varying concentrations of Triton (detergent-treated mixture) prior to enzyme assay. However, the detergent-solubilized supernatants as well as the detergent-insoluble residues (pellets) derived from detergent-treated mixtures possessed appreciable Mg2+-supported enzyme activity. With Mn2+, significant enzyme activity was detectable in the original particulate fraction assayed without Triton. Much higher activity was seen in particulate fraction assayed with Triton and in detergent-treated mixtures; the supernatants but not the pellets derived from detergent-treated mixtures possessed even greater activity. The sum of enzyme activity in pellet and supernatant fractions greatly exceeded that of the mixture. When the pellets and supernatants derived from detergenttreated mixtures were recombined, measured enzyme activities were similar to those of the original mixture. With Mg2+ or Mn2+, the specific activity of guanylate cyclase in pellet and supernatant fractions varied considerably depending on the concentration of Triton used for treatment of the particulate fraction; treatment with low concentrations of Triton (0.2–0.7 μmol/mg protein) gave supernatants showing high activity whereas treatment with relatively greater concentrations of the detergent (>0.7 μmol/mg protein) gave pellets showing high activity. The relative distribution of guanylate cyclase in pellet and supernatant fractions expressed as a function of Triton concentration during treatment (of the particulate fraction) showed that 50 to 80% of the recovered enzyme activity remained in supernatants at low detergent concentrations whereas 50 to 80% of the recovered activity resided in the pellets at higher detergent concentrations. Inclusion of excess Triton in the enzyme assay medium did not alter the specific activity profiles and the relative distribution patterns of the cyclase in pellet versus supernatant fractions. The results demonstrate the inherent potential of cardiac particulate guanylate cyclase to utilize Mg2+ in catalyzing the synthesis of cyclic GMP. However, it appears that some factor(s) endogenous to the cardiac particulate fraction severely impairs the expression of Mg2+-dependent activity; Mn2+-dependent activity is also affected by such factor(s) but apparently less severely. Further, the results suggest that previously reported activities of cardiac particulate guanylate cyclase, despite being assayed with Mn2+ and in the presence of Triton X-100, represent underestimation of what otherwise appears to be a highly active enzyme system capable of utilizing physiologically relevant divalent cation such as Mg2+.  相似文献   

12.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%.  相似文献   

13.
Sodium azide, hydroxylamine, and phenylhydrazine at concentrations of 1 mM increased the activity of soluble guanylate cyclase from rat liver 2- to 20-fold. The increased accumulation of guanosine 3':5'-monophosphate in reaction mixtures with sodium azide was not due to altered levels of substrate, GTP, or altered hydrolysis of guanosine 3':5'-monophosphate by cyclic nucleotide phosphodiesterase. The activation of guanylate cyclase was dependent upon NaN3 concentration and temperature; preincubation prevented the time lag of activation observed during incubation. The concentration of NaN3 that resulted in half-maximal activation was 0.04 mM. Sodium azide increased the apparent Km for GTP from 35 to 113 muM. With NaN3 activation the enzyme was less dependent upon the concentration of free Mn2+. Activation of enzyme by NaN3 was irreversible with dilution or dialysis of reaction mixtures. The slopes of Arrhenius plots were altered with sodium azide-activated enzyme, while gel filtration of the enzyme on Sepharose 4B was unaltered by NaN3 treatment. Triton X-100 increased the activity of the enzyme, and in the presence of Triton X-100 the activation by NaN3 was not observed. Trypsin treatment decreased both basal guanylate cyclase activity and the responsiveness to NaN3. Phospholipase A, phospholipase C, and neuraminidase increased basal activity but had little effect on the responsiveness to NaN3. Both soluble and particulate guanylate cyclase from liver and kidney were stimulated with NaN3. The particulate enzyme from cerebral cortex and cerebellum was also activated with NaN3, whereas the soluble enzyme from these tissues was not. Little or no effect of NaN3 was observed with preparations from lung, heart, and several other tissues. The lack of an effect with NaN3 on soluble GUANYLATE Cyclase from heart was probably due to the presence of an inhibitor of NaN3 activation in heart preparations. The effect of NaN3 was decreased or absent when soluble guanylate cyclase from liver was purified or stored at -20degrees. The activation of guanylate cyclase by NaN3 is complex and may be the result of the nucleophilic agent acting on the enzyme directly or what may be more likely on some other factor in liver preparations.  相似文献   

14.
In rat cerebellum the major portion of guanylate cyclase was found to be particulate-bound. The properties of particulate and supernatant guanylate cyclases from the cerebellum were comparatively examined. Both enzymes required the same optimal concentration of Mn2+ and were stimulated by Ca2+ in the presence of a low concentration of Mn2+. But dispersion of the particulate enzyme with Triton X-100 altered the Mn2+ concentration producing maximum activity and the inhibitory effect of Ca2+. The subcellular distributions of guanylate and adenylate cyclases were also studied in rat cerebellum. The major portions of the two cyclases were found in the mitochondrial fraction. The submitochondrial fractions separated by sucrose gradient showed that the major activities of both cyclases were concentrated in the fraction containing mainly nerve ending particles.  相似文献   

15.
The effects of a variety of agents on guanylate cyclase activity were tested in broken cell preparations of mammary glands from midpregnant mice. Of the agents tested, only phospholipase A, triton X-100, and an impure egg lysolecithin preparation enhanced the activity of guanylate cyclase in mammary gland homogenates; other agents, including sodium azide and phospholipase C, and purified egg lysolecithin had no effect. Phospholipase A increased the activity of guanylate cyclase in the 150,000 g pellet fractions of mammary gland homogenates, bud did not consistently enhance guanylate cyclase in the 150,000 g supernatant fractions. Phospholipase A did not appear to enhance guanylate cyclase activity by solublizing the enzyme from the 150,000 g pellet. Triton X-100, in contrast, appeared to act by solubilizing guanylate cyclase from the material present in the 150,000 g pellet. Triton X-100 increased by several fold guanylate cyclase activity in the tissue homogenates and the 150,000 g pellets, but did not consistently enhance enzyme activity in the 150,000 g supernatant. Triton X-100 had no effect on the apparent Km of guanylate cyclase.  相似文献   

16.
The role of cyclic nucleotides in the regulation of lymphocyte growth and differentiation remains controversial, as an adequate characterization of the key enzymes, adenylate cyclase and guanylate cyclase, in the plasma membrane of lymphocytes is still lacking. In this study, calf thymus lymphocytes were disrupted by nitrogen cavitation and various cellular fractions were isolated by differential centrifugation and subsequent sucrose density ultracentrifugation. As revealed by the chemical composition and the activities of some marker enzymes, the plasma membrane fraction proved to be highly purified. Nucleotide cyclases were present in the plasma membranes in high specific activities, basal activities of adenylate cyclase being 13.7 pmol/mg protein per min and 34.0 pmol/mg protein per min for the guanylate cyclase, respectively. Adenylate cyclase could be stimulated by various effectors added directly to the enzyme assay, including NaF, GTP, 5'-guanylyl imidodiphosphate, Mn2+ and molybdate. Addition of beta-adrenergic agonists only showed small stimulating effects on the enzyme activity in isolated plasma membranes. Basal activity of adenylate cyclase as well as activities stimulated by NaF or 5'-guanylyl imidodiphosphate exhibited regular Michaelis-Menten kinetics. Activation by both agents only marginally affected the Km values, but largely increased Vmax. The activity of the plasma membrane-bound guanylate cyclase was about 10-fold enhanced by the nonionic detergent Triton X-100 and high concentrations of lysophosphatidylcholine, but was slightly decreased upon addition of the alpha-cholinergic agonist carbachol. Basal guanylate cyclase indicated to be an allosteric enzyme, as analyzed by the Hill equation with an apparent Hill coefficient close to 2. In contrast, Triton X-100 solubilized enzyme showed regular substrate kinetics with increasing Vmax but unaffected Km values. Thus the lymphocyte plasma membrane contains both adenylate cyclase and guanylate cyclase at high specific activities, with properties characteristic for hormonally stimulated enzymes.  相似文献   

17.
The particulate fraction from murine plasmocytoma cells contained 90 per cent of the total guanylate cyclase activity. Triton X-100 produced a 6 fold stimulation of guanylate cyclase activity in plasma membrane enriched fractions obtained by zonal centrifugation. Isolated inside out (10) vesicles contained 9 times more activity than rightside out (RSO) vesicles. This difference was abolished by Triton X-100 treatment of the vesicles indicating that the catalytic site of guanylate cyclase is located on the inner face of the plasma membrane. Kinetic studies of membranous guanylate cyclase showed that optimal activity was found with manganese. Only 20 per cent of this activity was obtained with magnesium. The Km for GTP with magnesium (1.4 mM) was about 7 fold greater than with manganese (0.2 mM). Positive cooperativity was obtained in both cases and the Hill coefficients were 1.8 for manganese and 1.6 for magnesium. Physiological concentrations of ATP were found to inhibit both manganese and magnesium supported activities indicating a possible regulatory mechanism for this nucleotide in vivo.  相似文献   

18.
Atrial natriuretic factors (ANFs) were tested for their effects on cyclic GMP production in two neurally derived cell lines, the C6-2B rat glioma cells and the PC12 rat pheochromocytoma cells. These cell lines were selected because both are known to possess high amounts of the particulate form of guanylate cyclase, a proposed target of ANF in peripheral organs. Previous studies from our laboratory have shown that ANF selectively activates particulate, but not soluble, guanylate cyclase in homogenates of a variety of rat tissues and that one class of ANF receptor appears to be the same glycoprotein as particulate guanylate cyclase. In the present study we found that four analogs of ANF stimulate cyclic GMP accumulation in both C6-2B and PC12 cells with the rank order of potency being atriopeptin III = atriopeptin II greater than human atrial natriuretic polypeptide greater than atriopeptin I. Atriopeptin II (100 nM) for 20 min elevated cyclic GMP content in C6-2B cells fourfold and in PC12 cells 12-fold. Atriopeptin II (100 nM) for 20 min also stimulated the efflux of cyclic GMP from both C6-2B cells (47-fold) and PC12 cells (12-fold). Accumulation of cyclic GMP in both cells and media was enhanced by preincubation with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (250 microM). After 20 min of exposure to atriopeptin II, cyclic GMP amounts in the media were equal to or greater than the amounts in the cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Adenylate cyclase from the guinea-pig pancreas was activated in a dose-dependent manner by both secretin and cholecystokinin-pancreozymin, but in contrast with results in other species the hormones were approximately equipotent. All other hormones and transmitter substances tested were without any effect on adenylate cyclase activity. Guanylate cyclase activity was shown to have both particulate and supernatant components in the guinea-pig pancreas. The particulate enzyme, but not the supernatant enzyme, was markedly activated by Triton X-100, and most of the induced activity was released into the supernatant. The supernatant enzyme was specifically Mn2+-dependent, but, even though Mn2+ was maximally effective at a concentration of 3 mM, activity could be raised further by increasing Ca2+ concentration. The particulate enzyme, by contrast, was relatively Mn2+-independent. Activity of the particulate guanylate cyclase was enhanced by phosphatidylserine. The supernatant enzyme displayed classical Michaelis-Menten kinetics, but the particulate enzyme deviated markedly from such kinetics. Under none of the conditions used was any significant activation of guanylate cyclase observed with any of the secretogen hormones or transmitter substances.  相似文献   

20.
The subcellular distribution and properties of guanylate cyclase was examined in preparations of normal rat renal cortex and Morris renal tumors MK2 and MK3. In normal kidney cortex about two-thirds of guanylate cyclase activity of homogenates was found in soluble fractions. With renal tumors the homogenate activity was less and the enzyme was equally divided between particulate and soluble fractions. The particulate enzyme in kidney cortex and tumors was associated with all particulate fractions. Triton X-100 increased the activity of all preparations. All preparations preferred Mn2+ as the sole cation. The stimulatory effects of Ca2+ on soluble enzyme and inhibitory effects on particulate activity were similar with preparations of renal cortex and tumors. ATP inhibited all preparations. Soluble and particulate guanylate cyclases from renal cortex were activated several-fold with 1 mM NaN3. Preparations of tumor enzymes did not respond to NaN3. Thus, compared to normal renal cortex the subcellular distribution of guanylate cyclase and some of its properties are altered in preparations of renal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号