首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HIV-1 Nef-mediated downregulation of cell surface MHC-I molecules to the trans-Golgi network (TGN) enables HIV-1 to escape immune surveillance. However, the cellular pathway used by Nef to downregulate MHC-I is unknown. Here, we show that Nef and PACS-1 combine to usurp the ARF6 endocytic pathway by a PI3K-dependent process and downregulate cell surface MHC-I to the TGN. This mechanism requires the hierarchical actions of three Nef motifs-the acidic cluster 62EEEE(65), the SH3 domain binding site 72PXXP(75), and M(20)-in controlling PACS-1-dependent sorting to the TGN, ARF6 activation, and sequestering internalized MHC-I to the TGN, respectively. These data provide new insights into the cellular basis of HIV-1 immunoevasion.  相似文献   

2.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

3.
The effects of soluble Nef protein on CD4(+) T cells were examined. CD4(+)-T-cell cultures exposed to soluble Nef were analyzed for apoptosis by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and hallmarks of apoptosis including cytoplasmic shrinkage, nuclear fragmentation, DNA laddering, and caspase activation. We observed dose- and time-dependent inductions of apoptosis. DNA laddering and activated caspase 3 were also evident. Cells treated with Nef/protein kinase inhibitor complexes were protected from Nef-induced apoptosis, suggesting possible roles for protein kinases in the apoptosis pathway. Similarly, cells treated with Nef/anti-Nef antibody complexes were protected from Nef-induced apoptosis. The cellular receptor responsible for Nef-induced apoptosis was identified through antibody- and ligand-blocking experiments as a receptor commonly involved in viral entry. CXCR4 antibodies, as well as the endogenous ligand SDF-1alpha, were effective in blocking Nef-induced apoptosis, while CCR5 and CD4 antibodies were ineffective. Moreover, a CXCR4-deficient cell line, MDA-MB-468, which was resistant to Nef-induced apoptosis, became sensitive upon transfection with a CXCR4-expressing vector. This study suggests that extracellular Nef protein could contribute to the decline of CD4 counts prior to and during the onset of AIDS in patients with human immunodeficiency virus type 1 infections.  相似文献   

4.
HIV-1 is capable of infecting many different cell types that express the CD4 molecule. In vivo and in vitro this infection is associated with profound immunologic defects. We have examined the effect of HIV-1 infection on the expression of MHC class I (MHC-I) molecules to explore the possibility that this important immune system molecule is perturbed after HIV-1 infection. Our data show that in vitro, HIV-1 infection of CD4+ PBL, and the CD4+ cell lines, CEM-E5, HT, and U937, results in decreased expression of MHC-I molecules on the cell surface. This down-modulation is transient, occurring 18 h after HIV-1 infection of CD4+ PBL and returning to normal expression by 24 h. In CEM-E5, MHC-I down-modulation occurs over the course of days, reaching its greatest decrease (40%) about the time the cells are producing the most virus. Reversal of MHC-I expression to normal levels occurs as viral production decreases. Down-regulation during the time periods examined appear to be specific for MHC-I and does not occur with other cell-surface Ag nor is it caused by selection of a preexisting cell population with low MHC-I expression. Radioimmunoprecipitation of MHC-I protein from CEM-E5 indicated that the decrease of surface MHC-I is caused by decreased total protein secondary to a decrease in the level of mRNA for MHC-I. These decreased levels of MHC-I are biologically relevant because HIV-1 infected CEM-E5 cells are less susceptible to CTL lysis determined by the use of MHC-I cytolytic T cell clones and with the use of cold target-inhibition assay.  相似文献   

5.
6.
Mathematical modeling is becoming established in the immunologist's toolbox as a method to gain insight into the dynamics of the immune response and its components. No more so than in the case of the study of human immunodeficiency virus (HIV) infection, where earlier work on the viral dynamics brought significant advances in our understanding of HIV replication and evolution. Here, I review different areas of the study of the dynamics of CD4+ T cells in the setting of HIV, where modeling played important and diverse roles in helping us understand CD4+ T-cell homeostasis and the effect of HIV infection. As the experimental techniques become more accurate and quantitative, modeling should play a more important part in both experimental design and data analysis.  相似文献   

7.
The HIV protein Nef is thought to mediate immune evasion and promote viral persistence in part by down-regulating major histocompatibility complex class I protein (MHC-I or HLA-I) from the cell surface. Two different models have been proposed to explain this phenomenon as follows: 1) stimulation of MHC-I retrograde trafficking from and aberrant recycling to the plasma membrane, and 2) inhibition of anterograde trafficking of newly synthesized HLA-I from the endoplasmic reticulum to the plasma membrane. We show here that Nef simultaneously uses both mechanisms to down-regulate HLA-I in peripheral blood mononuclear cells or HeLa cells. Consistent with this, we found by using fluorescence correlation spectroscopy that a third of diffusing HLA-I at the endoplasmic reticulum, Golgi/trans-Golgi network, and the plasma membrane (PM) was associated with Nef. The binding of Nef was similarly avid for native HLA-I and recombinant HLA-I A2 at the PM. Nef binding to HLA-I at the PM was sensitive to specific inhibition of endocytosis. It was also attenuated by cyclodextrin disruption of PM lipid micro-domain architecture, a change that also retarded lateral diffusion and induced large clusters of HLA-I. In all, our data support a model for Nef down-regulation of HLA-I that involves both major trafficking itineraries and persistent protein-protein interactions throughout the cell.  相似文献   

8.
HIV-1 Nef-mediated CD4 downmodulation involves various host factors. We investigated the importance of AP-1, AP-2, AP-3, V1H-ATPase, β-COP, and ACOT8 for CD4 downmodulation in HIV-1-infected short hairpin RNA (shRNA)-expressing CD4+ T cells and characterized direct interaction with Nef by Förster resonance energy transfer (FRET). Binding of lentiviral Nefs to CD4 and AP-2 was conserved, and only AP-2 knockdown impaired Nef-mediated CD4 downmodulation from primary T cells. Altogether, among the factors tested, AP-2 is the most important player for Nef-mediated CD4 downmodulation.  相似文献   

9.
10.
Human immunodeficiency virus (HIV)-1 Nef protein is an essential modulator of AIDS pathogenesis and we have previously demonstrated that rNef enters uninfected human monocytes and induces T cells bystander activation, up-regulating IL-15 production. Since dendritic cells (DCs) play a central role in HIV-1 primary infection we investigated whether rNef affects DCs phenotypic and functional maturation in order to define its role in the immunopathogenesis of AIDS. We found that rNef up-regulates the expression on immature DCs of surface molecules known to be critical for their APC function. These molecules include CD1a, HLA-DR, CD40, CD83, CXCR4, and to a lower extent CD80 and CD86. On the other hand, rNef down-regulates surface expression of HLA-ABC and mannose receptor. The functional consequence of rNef treatment of immature DCs is a decrease in their endocytic and phagocytic activities and an increase in cytokine (IL-1beta, IL-12, IL-15, TNF-alpha) and chemokine (MIP-1alpha, MIP-1beta, IL-8) production as well as in their stimulatory capacity. These results indicate that rNef induces a coordinate series of phenotypic and functional changes promoting DC differentiation and making them more competent APCs. Indeed, Nef induces CD4(+) T cell bystander activation by a novel mechanism involving DCs, thus promoting virus dissemination.  相似文献   

11.
12.
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.  相似文献   

13.
Preferential apoptosis of HIV-1-specific CD4+ T cells   总被引:4,自引:0,他引:4  
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an important contributor to the pathogenesis of CD4+ T cell depletion in HIV/AIDS. We show here that, within HIV-1-infected individuals, a greater proportion of ex vivo HIV-1-specific CD4+ T cells undergo apoptosis compared with CMV-specific CD4+ T cells (45 vs 7.4%, respectively, p < 0.05, in chronic progressors). The degree of apoptosis within HIV-1-specific CD4+ T cells correlates with viral load and disease progression, and highly active antiretroviral therapy abrogates these differences. The data support a mechanism for apoptosis in these cells similar to that found in activation-induced apoptosis through the TCR, resulting in oxygen-free radical production, mitochondrial damage, and caspase-9 activation. That HIV-1 proteins can also directly enhance activation-induced apoptosis supports a mechanism for a preferential induction of apoptosis of HIV-1-specific CD4+ T cells, which contributes to a loss of immunological control of HIV-1 replication.  相似文献   

14.
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.  相似文献   

15.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

16.
17.
18.
A HIV-1 Nef affinity column was used to purify a 35-kDa Nef-interacting protein from T-cell lysates. The 35-kDa protein was identified by peptide microsequence analysis as the human thioesterase II (hTE) enzyme, an enzyme previously identified in a yeast two-hybrid screen as a potential Nef-interacting protein. Immunofluorescence studies showed that hTE localizes to peroxisomes and that coexpression of Nef and hTE leads to relocalization of Nef to peroxisomes. Interaction of Nef and hTE was abolished by point mutations in Nef at residues Asp(108), Leu(112), Phe(121), Pro(122), and Asp(123). All of these mutations also abrogated the ability of Nef to down-regulate CD4 from the surface of HIV-infected cells. Based on the x-ray and NMR structures of Nef, these residues define a surface on Nef critical for CD4 down-regulation. A subset of these mutations also affected the ability of Nef to down-regulate major histocompatibility complex class I. These results, taken together with previous studies, identify a region on Nef critical for most of its known functions. However, not all Nef alleles bind to hTE with high affinity, so the role of hTE during HIV infection remains uncertain.  相似文献   

19.
Nef is a HIV-1 accessory protein critical for the replication of the virus and the development of AIDS. The major pathological activity of Nef is the down-regulation of CD4, the primary receptor of HIV-1 infection. The mechanism underlying Nef-mediated CD4 endocytosis and degradation remains incompletely understood. Since protein ubiquitination is the predominant sorting signal in receptor endocytosis, we investigated whether Nef is ubiquitinated. The in vivo ubiquitination assay showed that both HIV-1 and SIV Nef proteins expressed in Jurkat T cells and 293T cells were multiple ubiquitinated by ubiquitin-His. The lysine-free HIV-1 Nef mutant (Delta10K) generated by replacing all 10 lysines with arginines was not ubiquitinated and the major ubiquitin-His attachment sites in HIV-1 Nef were determined to be lysine 144 (di-ubiquitinated) and lysine 204 (mono-ubiquitinated). Lysine-free HIV-1 Nef was completely inactive in Nef-mediated CD4 down-regulation, so was the Nef mutant with a single arginine substitution at K144 but not at K204. A mutant HIV-1 provirion NL4-3 with a single arginine substitution in Nef at K144 was also inactive in Nef-mediated CD4 down-regulation. Lysine-free Nef mutant reintroduced with lysine 144 (DeltaK10 + K144) was shown active in CD4 down-regulation. These data suggest that ubiquitination of Nef, particularly diubiquitination of the lysine 144, is necessary for Nef-mediated CD4 down-regulation.  相似文献   

20.
The Nef proteins of simian and human immunodeficiency viruses are known to directly bind and downregulate the CD4 receptor of infected cells. Recent results suggest that residues forming an alpha-helix N-cap in the CD4 cytoplasmic domain play a role in binding of CD4 to human immunodeficiency virus type 1 Nef protein. We determined the dissociation constants between Nef and several CD4 peptides that contain or do not contain the respective alpha-helix N-cap. Further, we compared helical secondary structure content of these CD4 peptide variants by circular dichroism spectroscopy. We conclude that presence of an alpha-helix in CD4 cytoplasmic domain increases CD4 affinity to Nef. In addition, the amino acid sequence of residues forming the helix N-cap influences CD4 affinity to Nef, too. Finally, the structural changes induced in Nef and CD4 upon binding to each other are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号