首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Aleksa K  Nava-Ocampo A  Koren G 《Chirality》2009,21(7):674-680
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity in children with cancer, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Using plasma samples obtained from pediatric oncology patients, we developed a simple nonderivatizing enantioselective liquid chromatography mass spectrometry method to detect the (R) and (S)-2- and 3-dechloroethylifosfamide metabolites. The (R) and (S)-enantiomers of the 2- and 3-DCEIF (N-3-dechlroethylifosfamide) were detectable in all 22 patients' samples with levels ranging from 9.9 to 238.7 ng/ml for (R)-2-DCEIF, 15.8 to 663.0 ng/ml for (S)-2-DCEIF, 20.8 to 852.8 ng/l for (R)-3-DCEIF and 28.0 to 862.0 ng/ml for (S)-3-DCEIF. In addition, the lower limit of quantification for this method is 1 ng/ml. Future studies should concentrate on (R) or (S) production of the 2-DCEIF and 3-DCEIF and subsequently chloroacetaldehyde formation with the aim of considering the administration of only the (R)-IF as its metabolism results in a lower production of chloroacetaldehyde.  相似文献   

2.
We present a comprehensive, sensitive, and highly specific negative ion electrospray LC/MS method for identifying all structural classes of glucosinolates in crude plant extracts. The technique is based on the observation of simultaneous maxima in the abundances of the m/z 96 and 97 ions, generated by programmed cone voltage fragmentation, in the mass chromatogram. The abundance ratios lie in the range 1:2-1:4 ([m/z 96]/[m/z 97]). Examination of the corresponding full-scan mass spectra allows individual glucosinolates of all structural classes to be identified rapidly and with confidence. The use of linearly programmed cone voltage fragmentation enhances characteristic fragment ions without compromising the abundance of the analytically important [M - H]- ion and its associated (and analytically useful) sulfur isotope peaks. Detection limits are in the low nanogram range for full-scan, programmed cone voltage spectra. Comparison of the technique with LC/MS/MS methods (product ion, precursor ion, and constant neutral loss scans) has shown that the sensitivity and selectivity of the programmed cone voltage method is superior. Data obtained on a variety of plant extracts confirmed that the methodology was robust and reliable.  相似文献   

3.
4.
The relationship between lipid status and metabolism, infant development and health has widely been studied, but the importance of individual glycerophospholipid species for biological functions in infants has hardly been considered. We developed a method for quantitative analyses of plasma glycerophospholipids from small sample volume. Proteins were precipitated with methanol, which eliminated further sample preparation. The supernatant was analysed by reversed-phase HPLC using a gradient of water, methanol and isopropanol as mobile phase. Electrospray ionisation in negative mode in combination with tandem mass spectrometry enabled detection of specific fatty acids as fragments of glycerophospholipid species. With this combination of chromatography and mass spectrometry, PC, lyso-PC, PE and lyso-PE species and their relevant isobaric compounds were quantified. Method validation showed a linear working range between 0.05 μmol/L and 10 μmol/L in diluted plasma samples. The intra-assay coefficients of variation (n=6) ranged from 1.1% to 13.9%. Results were comparable with data of the human metabolome database and gas chromatographic fatty acid analyses. All quantitatively important PE and PC species are covered. The method can be applied for investigating dietary effects on plasma GP composition from small plasma volumes.  相似文献   

5.
6.
Purinergic Signalling - Purine metabolites have been implicated as clinically relevant biomarkers of worsening or improving Parkinson’s disease (PD) progression. However, the identification...  相似文献   

7.
8.
Liu F  Wu C  Sweedler JV  Goshe MB 《Proteomics》2012,12(3):401-405
We describe a novel two-step LC/MS(n) strategy to effectively and confidently identify numerous crosslinked peptides from complex mixtures. This method incorporates the use of our gas-phase cleavable crosslinking reagent, disuccinimidyl-succinamyl-aspartyl-proline (SuDP), and a new data-processing algorithm CXLinkS (Cleavable Crosslink Selection), which enables unequivocal crosslink peptide selection and identification on the basis of mass measurement accuracy, high resolving power, and the unique fragmentation pattern of each crosslinked peptide. We demonstrate our approach with well-characterized monomeric and multimeric protein systems with and without database searching restrictions where inter-peptide crosslink identification is increased 8-fold over our previously published data-dependent LC/MS3 method and discuss its applicability to other CID-cleavable crosslinkers and more complex protein systems.  相似文献   

9.
A new liquid chromatography mass spectrometry (LC/MS) method has been developed for the qualitative and quantitative analyses of phosphatidylcholine hydroperoxides (PC-OOH) in human plasma using a synthetic hydroperoxide (1-stearoyl-2-erucoyl-PC monohydroperoxide, PC 18:0/22:1-OOH) as an internal standard. 1-Stearoyl-2-linoleoyl-PC monohydroperoxide (PC 18:0/18:2-OOH) was identified in plasma by LC/MS by comparison with an authentic standard. The calibration curves obtained for 1-palmitoyl-2-linoleoyl-PC monohydroperoxide, PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were linear throughout the calibration range (0.1–1.0 pmol). The limit of detection (LOD) (S/N = 3:1) was 0.01 pmol, and the limit of quantification (LOQ) (S/N = 6:1) was 0.1 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. Plasma concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were 89 and 32 nM, respectively, in a healthy volunteer.  相似文献   

10.
Because acyl-CoAs play major roles in numerous anabolic and catabolic pathways, the quantitative determination of these metabolites in biological tissues is paramount to understanding the regulation of these metabolic processes. Here, we report a method for the analysis of a collection of short-chain acyl-CoAs (<6 carbon chain length) from plant extracts. Identification of each individual acyl-CoA was conducted by monitoring specific mass-fragmentation ions that are derived from common chemical moieties of all Coenzyme A (CoA) derivatives, namely the adenosine triphosphate nucleotide, pantothenate and acylated cysteamine. This method is robust and quick, enabling the quantitative analysis of up to 12 different acyl-CoAs in plant metabolite extracts with minimal post-extraction processing, using a 30 min chromatographic run-time.  相似文献   

11.
The following analytical methods have been used to identify and quantify degradation products in an E. coli expressed human immunoglobulin G Fc fusion protein in both liquid and lyophilized forms: two-dimensional AEX/RP/MS, limited proteolysis followed by LC/MS, and tryptic digestion followed by LC/MS/MS. After aging in a potassium phosphate pH 7.0 buffer for 3 months at 29 °C, peptide map analysis revealed that asparagine N78 (N297 according to Edelman sequencing) of the CH2 domain was the most rapidly deamidated site in the molecule probably due to the lack of the N-linked glycan on this asparagine, but this deamidation can be prevented under properly formulated conditions. This is the first report on the rate of deamidation on N297 of an IgG molecule without glycosylation. The active protein portion of the Fc fusion protein contains two methionine residues that are potentially susceptible to oxidation. Limited proteolysis was employed to cleave the active protein portion and measure the amount of oxidation. LC/MS analysis identified that the liquid sample aged at 29 °C for 3 months produced 40% oxidation, while the control sample contained only 4% oxidation on the active protein. In contrast to the aged liquid sample, the aged lyophilized sample showed no increase of deamidation or oxidation after storage at 37 °C for 8 months.  相似文献   

12.
A sensitive and selective method using high-performance liquid chromatography in combination with atmospheric pressure chemical ionization tandem mass spetrometry (LC-APCI-MS/MS) has been developed for the determination of Deoxynivalenol (DON) in trace levels. The extract was purified with a MultiSep? column followed by the Vicam? DON immunoaffinity column. Quantification is based on an external standard method using positive Multiple Reaction Monitoring (MRM). The limit of detection was 5 μg/kg with a signal to noise ratio of 3:1.  相似文献   

13.
Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS   总被引:1,自引:0,他引:1  
An LC/MS/MS assay for the determination of tenofovir (TNF) was developed and validated for use with the EDTA anticoagulated human plasma matrix. Heparin-treated plasma and serum matrices were also validated. After addition of adefovir as an internal standard, trifluoroacetic acid was used to produce a protein-free extract. Chromatographic separation was achieved with a Polar-RP Synergi, 2.0 mm x 150 mm, reversed-phase analytical column. The mobile phase was 3% acetonitrile/1% acetic acid, aq. Detection of TNF and the internal standard was achieved by ESI MS/MS in the positive ion mode using 288/176 and 274/162 transitions, respectively. The method was linear from 10 to 750 ng/ml with a minimum quantifiable limit of 10 ng/ml when 250 microl aliquots were analyzed. The usefulness of this LC/MS/MS method to routinely monitor plasma concentrations of TNF was demonstrated along with its ability to assist in the performance of pharmacokinetic studies.  相似文献   

14.
Assessment of differential protein abundance from the observed properties of detected peptides is an essential part of protein profiling based on shotgun proteomics. However, the abundance observed for shared peptides may be due to contributions from multiple proteins that are affected differently by a given treatment. Excluding shared peptides eliminates this ambiguity but may significantly decrease the number of proteins for which abundance estimates can be obtained. Peptide sharing within a family of biologically related proteins does not cause ambiguity if family members have a common response to treatment. On the basis of this concept, we have developed an approach for including shared peptides in the analysis of differential protein abundance in protein profiling. Data from a recent proteomics study of lung tissue from mice exposed to lipopolysaccharide, cigarette smoke, and a combination of these agents are used to illustrate our method. Starting from data where about half of the implicated database protein involved shared peptides, 82% of the affected proteins were grouped into families, based on FASTA annotation, with closure on peptide sharing. In many cases, a common abundance relative to control was sufficient to explain ion-current peak areas for peptides, both unique and shared, that identified biologically related proteins in a peptide-sharing closure group. On the basis of these results, we propose that peptide-sharing closure groups provide a way to include abundance data for shared peptides in quantitative protein profiling by high-throughput mass spectrometry.  相似文献   

15.
Highly complex protein mixtures can be directly analyzed after proteolysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this paper, we have utilized the combination of strong cation exchange (SCX) and reversed-phase (RP) chromatography to achieve two-dimensional separation prior to MS/MS. One milligram of whole yeast protein was proteolyzed and separated by SCX chromatography (2.1 mm i.d.) with fraction collection every minute during an 80-min elution. Eighty fractions were reduced in volume and then re-injected via an autosampler in an automated fashion using a vented-column (100 microm i.d.) approach for RP-LC-MS/MS analysis. More than 162,000 MS/MS spectra were collected with 26,815 matched to yeast peptides (7,537 unique peptides). A total of 1,504 yeast proteins were unambiguously identified in this single analysis. We present a comparison of this experiment with a previously published yeast proteome analysis by Yates and colleagues (Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7). In addition, we report an in-depth analysis of the false-positive rates associated with peptide identification using the Sequest algorithm and a reversed yeast protein database. New criteria are proposed to decrease false-positives to less than 1% and to greatly reduce the need for manual interpretation while permitting more proteins to be identified.  相似文献   

16.
A liquid chromatography-mass spectrometry (LC/MS) assay method was developed for the quantification of PSC 833 in rat plasma, using amiodarone as internal standard (IS). Separation was achieved using a C(8) 3.5 microm (2.1 mm x 50 mm) column heated to 60 degrees C with a mobile phase consisting of acetonitrile-ammonium hydroxide 0.2% (90:10 v/v) pumped at a rate of 0.2 mL/min. Detection was accomplished by mass spectrometer using selected ion monitoring (SIM) in positive mode. An excellent linear relationship was present between peak height ratios and rat plasma concentrations of PSC 833 ranging from 10 to 5000 ng/mL (R(2)>0.99). Intra-day and inter-day coefficients of variation (CV%) were less than 15%, and mean error was less than 10% for the concentrations above the limit of quantification. The validated limit of quantification of the assay was 10 ng/mL based on 0.1 mL rat plasma. The method limit of detection, based on an average signal-to-noise (S/N) ratio of 3, was found to be 2.5 ng/mL. The assay was capable of measuring the plasma concentrations of PSC 833 in rats injected with a single dose of 5 mg/kg of the drug. PSC 833 and IS eluted within 4 min, free of interfering peaks. The method was found to be fast, sensitive, and specific for the quantification of PSC 833 in rat plasma.  相似文献   

17.
Glutathione (GSH) is one of the major, soluble, low molecular weight antioxidants, as well as the major non-protein thiol in plant cells. However, the relevance of this molecule could be even greater considering that it can react with nitric oxide (NO) to generate S-nitrosoglutathione (GSNO) which is considered to function as a mobile reservoir of NO bioactivity in plants. Although this NO-derived molecule has an increased physiological and phytopathological relevance in plants cells, its identification and quantification in plant tissues have not be reported so far. Using liquid chromatography-electrospray/mass spectrometry (LC-ES/MS), a method was set up to detect and quantify simultaneously GSNO as well reduced and oxidized glutathione (GSH and GSSG, respectively) in different pepper plant organs including roots, stems and leaves, and in Arabidopsis leaves. The analysis of NO and GSNO reductase (GSNOR) activity in these pepper organs showed that the content of GSNO was directly related to the content of NO in each organ and oppositely related to the GSNOR activity. This approach opens up new analytical possibilities to understand the relevance of GSNO in plant cells under physiological and stress conditions.  相似文献   

18.
Pinus radiata is one of the most economically important forest tree species, with a worldwide production of around 370 million m (3) of wood per year. Current selection of elite trees to be used in conservation and breeding programes requires the physiological and molecular characterization of available populations. To identify key proteins related to tree growth, productivity and responses to environmental factors, a proteomic approach is being utilized. In this paper, we present the first report of the 2-DE protein reference map of physiologically mature P. radiata needles, as a basis for subsequent differential expression proteomic studies related to growth, development, biomass production and responses to stresses. After TCA/acetone protein extraction of needle tissue, 549 +/- 21 well-resolved spots were detected in Coommassie-stained gels within the 5-8 pH and 10-100 kDa M(r) ranges. The analytical and biological variance determined for 450 spots were of 31 and 42%, respectively. After LC/MS/MS analysis of in-gel tryptic digested spots, proteins were identified by using the novel Paragon algorithm that tolerates amino acid substitution in the first-pass search. It allowed the confident identification of 115 out of the 150 protein spots subjected to MS, quite unusual high percentage for a poor sequence database, as is the case of P. radiata. Proteins were classified into 12 or 18 groups based on their corresponding cell component or biological process/pathway categories, respectively. Carbohydrate metabolism and photosynthetic enzymes predominate in the 2-DE protein profile of P. radiata needles.  相似文献   

19.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

20.
Tocopherols and tocotrienols are metabolized via hydroxylation and oxidation of their hydrophobic side chain to generate 13′-hydroxychromanols (13′-OHs) and various carboxychromanols, which can be further metabolized by conjugation including sulfation. Recent studies indicate that long-chain carboxychromanols, especially 13′-carboxychromanol (13′-COOH), appear to be more bioactive than tocopherols in anti-inflammatory and anticancer actions. To understand the potential contribution of metabolites to vitamin E-mediated effects, an accurate assay is needed to evaluate bioavailability of these metabolites. Here we describe an LC/MS/MS assay for quantifying vitamin E metabolites using negative polarity ESI. This assay includes a reliable sample extraction procedure with efficacy of ≥ 89% and interday/intraday variation of 3–11% for major metabolites. To ensure accurate quantification, short-chain, long-chain, and sulfated carboxychromanols are included as external/internal standards. Using this assay, we observed that sulfated carboxychromanols are the primary metabolites in the plasma of rodents fed with γ-tocopherol or δ-tocopherol. Although plasma levels of 13′-COOHs and 13′-OHs are low, high concentrations of these compounds are found in feces. Our study demonstrates an LC/MS/MS assay for quantitation of sulfated and unconjugated vitamin E metabolites, and this assay will be useful for evaluating the role of these metabolites in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号