首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The vaccine potential of Edwardsiella tarda ghosts produced by gene E mediated lysis was investigated using tilapia (Oreochromis mosambicus). Tilapia immunized with E. tarda ghosts (ETG) and formalin killed E. tarda (FKC) vaccines showed significantly higher serum agglutination titers than control fish. Fish immunized with ETG showed no significant differences with fish immunized with FKC in serum agglutination titers, but showed significantly higher bactericidal activity than fish immunized with FKC. Furthermore, fish immunized with ETG showed higher protection than fish immunized with FKC. As this promising type of a non-living whole cell envelope preparation seems to be favorable over conventional vaccines, we suggest E. tarda ghosts as a new vaccine candidate.  相似文献   

2.
Bacterial ghost is a novel vaccine platform, and its safe and efficient production depends largely upon a suitable and functional vector. In this study, a series of temperature-inducible plasmids, carrying Phix174 lysis gene E and/or staphylococcal nuclease A (SNA) gene, were constructed and evaluated in Escherichia coli. The results showed that the direct product of SNA (pBV220-SNA) could degrade the plasmid and genomic DNA of E. coli while the fusion product of gene E and partial Cro gene (pKF396M-2) lost the ability to lyse the host strain. The insertion of enhancer T7g10 elements and Shine–Dalgarno box (ESD) between them (pKF396M-3) could resume the function of gene E. Using plasmid pKF396M-4 with gene E and SNA, respectively, under the immediate control of promoter pR and pL, the remnant plasmids and genomic DNA of E. coli were eliminated, and the rates of inactivation increased by two orders of magnitude over that obtained with the exclusive use of E-mediated lysis plasmid. By substituting these two genes with customized multiple cloning sites sequences, the plasmid could be modified to a dual expression vector (pKF396M-5).  相似文献   

3.
The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage phiX174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression.  相似文献   

4.
Knowing the entire sequence of the gene encoding the DNA gyrase Subunit A (gyrA) of Edwardsiella tarda could be very useful for confirming the role of gyrA in quinolone resistance. Degenerate primers for the amplification of gyrA were designed from consensus nucleotide sequences of gyrA from 9 different Gram-negative bacteria, including Escherichia coli. With these primers, DNA segments of the predicted size were amplified from the genomic DNA of E. tarda and then the flanking sequences were determined by cassette ligation-mediated polymerase chain reaction. The nucleotide sequence of gyrA was highly homologous to those of other bacterial species, in both the whole open-reading frame and the quinolone-resistance-determining region (QRDR). The 2637-bp gyrA gene encodes a protein of 878 amino acids, preceded by a putative promoter, ribosome binding site and inverted repeated sequences for cruciform structures of DNA. However, the nucleotide sequence of the flanking region did not show any homologies with those of other bacterial DNA gyrase Subunit B genes (gyrB) and suggested the gyrase genes, gyrA and gyrB, are non-continuous on the chromosome of E. tarda. All of the 12 quinolone-resistant isolates examined have an alteration within the QRDR, Ser83 --> Arg, suggesting that, in E. tarda, resistance to quinolones is primarily related to alterations in gyrA. Transformation with the full sequence of E. tarda gyrA bearing the Ser83 --> Arg mutation was able to complement the sequence of the gyrA temperature-sensitive mutation in the E. coli KNK453 strain and to induce increased resistance to quinolone antibiotics at 42 degrees C.  相似文献   

5.
The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage X174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression.  相似文献   

6.
Aim: To prepare enteropathogenic Escherichia coli (EPEC) E2348/69 ghosts and investigate whether immunization with EPEC bacterial ghosts can elicit protective immune responses. Methods and Results: A recombinant plasmid with double λPL/PR‐cI857 temperature‐sensitive regulatory cassettes was constructed. The lysis gene E and/or the staphylococcal nuclease A (SNA) gene were separately inserted downstream of the two regulatory cassettes to construct the lysis plasmids pBV220::E and pBV220::E::CI‐P‐SNA. An EPEC reference strain E2348/69 (serotype O127:H6) was transformed with the lysis plasmids to produce EPEC ghosts. Mice injected with bacterial ghosts EGE (EPEC ghosts produced using lysis protein E) or EGES (EPEC ghosts produced using a combination of lysis protein E and SNA) gained weight normally and showed no clinical signs of disease. Vaccination trials showed that mice immunized with EGE or EGES were significantly protected against subsequent challenge with the wild‐type virulent parent strain, EPEC E2348/69 (42/50 and 45/50 survival, respectively); in contrast, none of the 30 control mice survived. Conclusions: Immunization with EPEC ghosts can elicit protective immune responses in BALB/c mice. Significance and Impact of the Study: EPEC ghosts may represent a promising new approach for vaccination against EPEC infection.  相似文献   

7.
通过腹腔注射、口服两种免疫途径探讨迟缓爱德华菌菌蜕疫苗对罗非鱼Oreochromis niloticus的免疫保护效果。将制备的迟缓爱德华菌菌蜕疫苗(ETG)和福尔马林灭活疫苗(FKC)采用腹腔注射、口服两种免疫途径免疫罗非鱼,分别于免疫后14d、21d和28d采集罗非鱼血清、头肾、脾脏,测定血清中抗体IgM水平,血清中酸性磷酸酶(ACP酶)、超氧化物歧化酶(SOD酶)活性及罗非鱼头肾和脾脏中白介素(IL-1)、肿瘤坏死因子(TNF)、干扰素(IFN)、Caspase3等细胞因子的相对表达量,并通过攻毒试验得到菌蜕疫苗、福尔马林灭活疫苗两种疫苗的相对免疫保护率。免疫组罗非鱼的血清抗体水平均极显著高于(P<0.01)对照组,ETG注射组抗体效价极显著高于(P<0.01)FKC口服组。免疫28d,免疫组SOD、ACP酶活力显著高于(P<0.05)对照组(Group E、F);在头肾中,免疫组(Group A、B)TNF、IL-1和IFN的相对表达量显著高于(P<0.05)对照组(Group E、F)。在免疫保护试验中,所有免疫组的免疫保护率均显著高于(P<0.05)对照组,注射、口服菌蜕疫苗的相对保护率分别为79%、77%,注射、口服灭活疫苗组的的相对保护率分别为62%、60%,但两种疫苗免疫保护率无显著差异。试验研制的菌蜕疫苗得到更高的免疫保护率,菌蜕疫苗在预防罗非鱼爱德华菌病中有良好的研究价值和应用前景。  相似文献   

8.
Vibrio anguillarum ghosts (VAG) were generated, for the first time, using a conjugation vector containing a ghost bacteria inducing cassette, pRK-λPR-cI-Elysis, in which the expression of PhiX174 lysis gene E was controlled by the P R /cI regulatory system of lambda phage. By scanning electron microscopy, holes ranging 80–200 nm in diameter were observed in the VAG. To avoid the presence of bacterial genomic DNA and an antibiotic resistance gene in the final VAG product, we constructed a new dual vector, pRK-λPR-cI-E-SNA, containing the E-mediated lysis cassette and the staphylococcal nuclease A (SNA)-mediated DNA degradation cassette, and generated safety-enhanced VAG for use as a fish vaccine.  相似文献   

9.
嗜水气单胞菌菌蜕的制备及其对银鲫的口服免疫   总被引:1,自引:0,他引:1  
菌蜕系统是一个自身具有佐剂性质的新型疫苗体系,不含细胞质内容物但具有细菌的完整表面抗原结构,可诱导机体的体液、细胞免疫应答及增强黏膜免疫反应.本研究通过将带有裂解基因E的质粒pElysis转化至嗜水气单胞菌J-1株中,对Ah J-1(pElysis)进行温度诱导,温度从28℃升至42℃,每隔15min检测菌液的OD600值,测定其溶菌动力学,并做无菌检验,用扫描电镜观察裂解后的细菌形态,研究其作为口服疫苗对银鲫的效果.结果显示,通过温度诱导,嗜水气单胞菌J-1(pElysis)OD值在诱导30min后开始持续下降,75min时开始趋于平稳,到120min溶菌效率达99.99%,诱导16h后进行无菌检验,证实其无活菌.扫描电镜观察绝大部分菌体经诱导后形成菌蜕,细胞两端有溶菌通道.动物试验表明,用菌蜕口服免疫的银鲫,在第5周产生较高的凝集抗体,达到27,并能维持2周;而甲醛灭活苗组为26,维持时间仅一周;生理盐水对照组效价仅2.攻击试验表明,菌蜕疫苗组和甲醛灭活疫苗组对嗜水气单胞菌强毒株J.1的攻击均有保护作用,其相对保护率分别为16/20(78.95%)和12/20(57.9%),显示菌蜕疫苗比普通灭活疫苗能更有效地激活机体的免疫保护.  相似文献   

10.
Two novel conditional broad-host-range cell lysis systems have been developed for the study of natural transformation in bacteria and the environmental fate of DNA released by cell death. Plasmid pDKL02 consists of lysis genes S, R, and Rz from bacteriophage lambda under the control of the Ptac promoter. The addition of inducer to Escherichia coli, Acinetobacter calcoaceticus, or Pseudomonas stutzeri containing plasmid pDKL02 resulted in cell lysis coincident with the release of high amounts of nucleic acids into the surrounding medium. The utility of this lysis system for the study of natural transformation with DNA released from lysed cells was assessed with differentially marked but otherwise isogenic donor-recipient pairs of P. stutzeri JM300 and A. calcoaceticus BD4. Transformation frequencies obtained with lysis-released DNA and DNA purified by conventional methods and assessed by the use of antibiotic resistance (P. stutzeri) or amino acid prototrophy (A. calcoaceticus) for markers were comparable. A second cell lysis plasmid, pDKL01, contains the lysis gene E from bacteriophage phi X174 and causes lysis of E. coli and P. stutzeri bacteria by activating cellular autolysins. Whereas DNA released from pDKL02-containing bacteria persists in the culture broth for days, that from induced pDKL01-containing bacteria is degraded immediately after release. The lysis system involving pDKL02 is thus useful for the study of both the fate of DNA released naturally into the environment by dead cells and gene transfer by natural transformation in the environment in that biochemically unmanipulated DNA containing defined sequences and coding for selective phenotypes can be released into a selected environment at a specific time point. This will allow kinetic measurements that will answer some of the current ecological questions about the fate and biological potential of environmental DNA to be made.  相似文献   

11.
12.
13.
The hybrid pre-enzyme formed by fusion of the signal peptide of the OmpA protein, a major outer membrane protein of Escherichia coli, to Staphylococcal nuclease A, a protein secreted by Staphylococcus aureus, is translocated across the cytoplasmic membrane of E. coli with concomitant cleavage of the signal peptide. A DNA fragment containing the coding sequence for the ompA signal peptide was initially ligated to a DNA fragment containing the coding sequence for nuclease A, with a linker sequence of 33 nucleotides separating the coding sequences. When this fused gene was induced, an enzymatically active nuclease was secreted into the periplasmic space; sequential Edman degradation of this protein revealed that the ompA signal peptide was removed at its normal cleavage site resulting in a modified version of the nuclease having 11 extra amino acid residues attached to the amino terminus of nuclease A. The 33 nucleotides between the coding sequences for the ompA signal peptide and the structural gene for nuclease A were subsequently deleted by synthetic oligonucleotide-directed site-specific mutagenesis. The nuclease produced by this hybrid gene was secreted into the periplasmic space and by sequential Edman degradation was identical to nuclease A. Thus, the ompA signal peptide is able to direct the secretion of fused staphylococcal nuclease A, and signal peptide processing occurs at the normal cleavage site. When the hybrid gene is expressed under the control of the lpp promoter, nuclease A is produced to the extent of 10% of the total cellular protein.  相似文献   

14.
BACKGROUND: E. coli and Salmonella ghost preparations, produced by applying the PhiX174 protein E-mediated lysis system, contain nonlysed bacteria at a very low percentage. To use the ghosts as vaccines, additional methods have to be identified to remove any viable cell, to end up in totally inactivated ghost fractions. Materials and Methods To increase the purity of ghost fractions, we established a green fluorescent protein (GFP)-dependent "in vivo staining" method to be combined with the E-mediated lysis system. Several gfp expression vectors were constructed, and the corresponding cellular fluorescence was analyzed. Bacterial fluorescence, exclusively preserved in nonlysed cells, was utilized to separate these cells from ghost preparations via flow cytometric sorting. RESULTS: High-level production of GFP prior to induction of the lysis system did not affect bacterial growth rates and caused no inhibitory effects on the subsequent protein E-mediated lysis of the cells. The population of reproductive or inactivated but nonlysed cells was highly fluorescent at mean intensities 215-fold higher than ghosts, which exhibited fluorescence at background level. Fluorescent cells could effectively be separated from ghost preparations via flow cytometric sorting. Cell sorting subsequent to protein E-mediated lysis reduced the number of viable cells within ghost preparations by a factor of 3 x 10(5). CONCLUSIONS: The presented procedure is compatible with the protein E-mediated lysis system, is highly effective in separation of nonlysed fluorescent cells, and may serve as a prototype for ghost-purification in applications where only a minimum number of viable cells within ghost preparations can be tolerated.  相似文献   

15.
We have determined the nucleotide sequence of the Drosophila DNA topoisomerase II gene. Data from primer extension and S1 nuclease protection experiments were combined with comparisons of genomic and cDNA sequences to determine the structure of the mature messenger RNA. This message has a large open reading frame of 4341 nucleotides. The length of the predicted protein is 1447 amino acids with a molecular weight of 164,424. Topoisomerase II can be divided into three domains: (1) an N-terminal region with homology to the B (ATPase) subunit of the bacterial type II topoisomerase, DNA gyrase; (2) a central region with homology to the A (breaking and rejoining) subunit of DNA gyrase; (3) a C-terminal region characterized by alternating stretches of positively and negatively charged amino acids. DNA topoisomerase II from the fruit fly shares significant sequence homology with those from divergent sources, including bacteria, bacteriophage T4 and yeasts. The location and distribution of homologous stretches in these sequences are analyzed.  相似文献   

16.
A protocol has been developed for the synthesis of a double-stranded DNA (dsDNA) copy of the influenza virus RNA genome segment which codes for the major surface antigen, haemagglutinin (HA). This dsDNA copy was inserted, after digestion with S1 nuclease and poly (dC) tailing with terminal transferase, into poly(dG)-tailed, PstI-cut, pBR322 DNA, and used to transform E. coli RR1. Tetracycline-resistant bacterial colonies were screened for the presence of plasmid containing the copied HA gene by testing their ability to hybridise to a specific, 32P-labelled, single-stranded DNA probe. Four cloned hybrid plasmids, containing DNA complementary to the HA gene of the influenza strain 29C (a laboratory derivative of influenza A/NT/60/68 (1)) were analysed by restriction enzyme mapping. Each contained a dsDNA insert equivalent to a full length copy of the HA gene. The nucleotide sequence of a selected restriction fragment from the DNA inserted in one of these cloned plasmids (C89) was determined. The amino acid sequence deduced from these data agreed with the amino acid sequence determined for the corresponding region of HA from the influenza strain A/Mem/102/72, another member of the Hong Kong subtype, identifying the inserted dsDNA of C89 as an authentic copy of the influenza HA gene.  相似文献   

17.
A novel HLA-B5 CREG gene, HLA-B SNA was cloned and the primary structure was determined. The sequence data showed that HLA-B SNA was identical to HLA-B51 except the alpha 1 domain in which one amino acid substitution at residue 74 and 5 amino acid substitutions associated with the Bw4/Bw6 epitopes were observed between these Ag. The comparison with other HLA-B locus genes suggested that HLA-B SNA evolved from HLA-B51 by gene exchange or recombination at the exon 2 between HLA-B51 and B8. A total of 10 of 14 HLA-B51-specific CTL clones showed significantly weak or no recognition of HLA-B SNA Ag. They also gave the same degree of a lysis of Hmy2CIR cells expressing the HLA-B35/51 chimeric Ag composed of the alpha 1 domain of HLA-B35 and other domains of HLA-B51 as that of Hmy2CIR cells expressing the HLA-B SNA Ag. These results demonstrated that amino acid substitutions within positions 77-83 associated with the HLA-Bw4/Bw6 epitopes have an influence on recognition of the HLA-B SNA antigen by HLA-B51-specific CTL.  相似文献   

18.
We purified a mouse DNA repair enzyme having apurinic/apyrimidinic endonuclease, DNA 3'-phosphatase, 3'-5'-exonuclease and DNA 3' repair diesterase activities, and designated the enzyme as APEX nuclease. A cDNA clone for the enzyme was isolated from a mouse spleen cDNA library using probes of degenerate oligonucleotides deduced from the N-terminal amino acid sequence of the enzyme. The complete nucleotide sequence of the cDNA (1.3 kilobases) was determined. Northern hybridization using this cDNA showed that the size of its mRNA is about 1.5 kilobases. The complete amino acid sequence for the enzyme predicted from the nucleotide sequence of the cDNA (APEX nuclease cDNA) indicates that the enzyme consists of 316 amino acids with a calculated molecular weight of 35,400. The predicted sequence contains the partial amino acid sequences determined by a protein sequencer from the purified enzyme. The coding sequence of APEX nuclease was cloned into pUC18 SmaI and HindIII sites in the control frame of the lacZ promoter. The construct was introduced into BW2001 (xth-11, nfo-2) strain cells of Escherichia coli. The transformed cells expressed a 36.4-kDa polypeptide (the 316 amino acid sequence of APEX nuclease headed by the N-terminal decapeptide of beta-galactosidase) and were less sensitive to methyl methanesulfonate than the parent cells. The fusion product showed priming activity for DNA polymerase on bleomycin-damaged DNA and acid-depurinated DNA. The deduced amino acid sequence of mouse APEX nuclease exhibits a significant homology to those of exonuclease III of E. coli and ExoA protein of Streptococcus pneumoniae and an intensive homology with that of bovine AP endonuclease 1.  相似文献   

19.
The potential risks associated with the intentional or unintentional release of genetically engineered microorganisms led to the construction of biological containment systems by which bacteria are killed in a controlled suicide process. In previously published suicide systems, cell killing was caused by proteins destroying the cell membrane or cell wall. Here a conditional cell killing system based on the intracellular degradation of cellular DNA is presented. The nuclease gene used was that of the extracellular nuclease of Serratia marcescens. The nuclease gene was deleted for the leader-coding sequence, and the truncated gene was put under the control of the lambda pL promoter. Following thermoinduction of the nuclease gene cassette in Escherichia coli, cell survival dropped to 2 x 10(-5), and more than 80% of the radioactively labeled DNA was converted to acid-soluble material within 2.5 h in the absence of cell lysis. The majority (84%) of clones which survived thermoinduced killing turned out to be as sensitive to a second thermoinduction as the original strain. The other clones showed somewhat slower killing kinetics or slightly higher final levels of survivors. The suicide system described combines the regulated killing of cells with the destruction of intracellular DNA otherwise potentially available for horizontal gene transfer processes.  相似文献   

20.
A computer bank of 16 S rRNA bacterial sequences was searched to determine a consensus sequence expected to hybridize with DNA from a wide variety of bacteria. An oligonucleotide probe, named a panprobe, containing this sequence was used to assay the degree of lysis of bacterial colonies on filter paper heated in a microwave oven and subsequently treated with NaOH. As determined by colony hybridization with the panprobe, lysis was achieved for 51 of 59 different species of bacteria tested. DNA, isolated from the eight bacteria not detected by colony hybridization, did hybridize with the panprobe in slot blot hybridizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号