首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that multiple sperm storage organs (spermathecae) could allow polyandrous females to control paternity. There is little conclusive evidence for this since insemination of individual spermathecae is generally not experimentally manipulable. Here, we examined sperm use patterns in the Australian redback spider (Latrodectus hasselti), which has paired, independent spermathecae. We assessed paternity when two rivals were forced to inseminate a single storage organ or opposite storage organs. When males inseminated a single spermatheca, mean paternity of the female's first mate was 79.8% (median 89.4%), and 38% of first mates achieved 100% paternity. In contrast, when males inseminated opposite organs, the mean paternity of the first mate was 49.3% (median 49.9%), only 10% of males achieved complete precedence, and paternity was normally distributed, suggesting sperm mixing. Males responded to this difference by avoiding previously inseminated female reproductive tracts. Complete sperm precedence can only be achieved if females permit males to copulate with both reproductive tracts. Females often cannibalize smaller males during their first copulation, thus limiting their paternity to 50%. These data show that multiple sperm storage organs can increase female control of paternity.  相似文献   

2.
Males of many animals perform ‘copulatory courtship’ during copulation, but the possible reproductive significance of this behaviour has seldom been investigated. In some animals, including the spider Physocyclus globosus (Pholcidae), the female discards sperm during or immediately following some copulations. In this study, we determined which of several variables associated with copulation correlated with paternity success in P. globosus when two males mate with a single female. Then, by determining which of these variables also correlated with sperm dumping, we inferred which variables may affect paternity via the mechanism of sperm dumping. Male abdomen vibration (a copulatory courtship behaviour) and male genitalic squeezing both correlated with both paternity and sperm dumping; so, these traits may be favoured by biased sperm dumping. Biased sperm dumping may also be the mechanism by which possible cryptic female choice favours another male trait that was the subject of a previous study, responsiveness to female stridulation.  相似文献   

3.
The prevalence and evolutionary consequences of cryptic female choice (CFC) remain highly controversial, not least because the processes underlying its expression are often concealed within the female reproductive tract. However, even when female discrimination is relatively easy to observe, as in numerous insect species with externally attached spermatophores, it is often difficult to demonstrate directional CFC for certain male phenotypes over others. Using a biological assay to separate male crickets into attractive or unattractive categories, we demonstrate that females strongly discriminate against unattractive males by removing their spermatophores before insemination can be completed. This results in significantly more sperm being transferred by attractive males than unattractive males. Males respond to CFC by mate guarding females after copulation, which increases the spermatophore retention of both attractive and unattractive males. Interestingly, unattractive males who suffered earlier interruption of sperm transfer benefited more from mate guarding, and they guarded females more vigilantly than attractive males. Our results suggest that postcopulatory mate guarding has evolved via sexual conflict over insemination times rather than through genetic benefits of biasing paternity toward vigorous males, as has been previously suggested.  相似文献   

4.
In polyandrous mating systems, sperm competition and cryptic female choice (CFC) are well recognized as postcopulatory evolutionary forces. However, it remains challenging to separate CFC from sperm competition and to estimate how much CFC influences insemination success because those processes usually occur inside the female's body. The Japanese pygmy squid, Idiosepius paradoxus, is an ideal species in which to separate CFC from sperm competition because sperm transfer by the male and sperm displacement by the female can be observed directly at an external location on the female's body. Here, we counted the number of spermatangia transferred to, removed from, and remaining on the female body during single copulation episodes. We measured behavioral and morphological characteristics of the male, such as duration of copulation and body size. Although males with larger body size and longer copulation time were capable of transferring larger amounts of sperm, females preferentially eliminated sperm from males with larger body size and shorter copulation time by spermatangia removal; thus, CFC could attenuate sperm precedence by larger males, whereas it reinforces sperm precedence by males with longer copulation time. Genetic paternity analysis revealed that fertilisation success for each male was correlated with remaining sperm volume that is adjusted by females after copulation.  相似文献   

5.
Ejaculated proteins play important roles in reproductive fitness. In many species, seminal fluid coagulates and forms what has been referred to as a copulatory plug in the female's reproductive tract. In mice, previous work demonstrated that knockout males missing a key seminal fluid protein were unable to form a plug and less successful at siring litters in noncompetitive matings (one female, one male), probably the result of reduced sperm transport or insufficient stimulation of the female. Here, we extend these previous studies to competitive matings (one female, two males) and make two key insights. First, when first males were unable to form a plug, they lost almost all paternity to second males to mate. Thus, the copulatory plugs of second males could not rescue the reduced fertility of first males. Second, we showed that the copulatory plug of first males effectively blocked fertilization by second males, even if first males were vasectomized. Taken together, our experiments demonstrated that first males lost almost all paternity if they never formed a plug. We discuss our results in the context of natural populations, where in spite of the strong effects seen here, pregnant female mice regularly carry litters fertilized by more than one male.  相似文献   

6.
Cryptic female choice (CFC) refers to female-mediated processes occurring during or after copulation that result in biased sperm use in favor of preferred or compatible males. Despite recent empirical support for this hypothesis, evidence that CFC contributes towards the evolution of male body ornaments, in the same way that precopulatory female choice does, is currently lacking. Here, we tested the possibility that CFC selects for increased male attractiveness in the guppy Poecilia reticulata, a freshwater fish exhibiting internal fertilization. Specifically, we examined whether females are able to manipulate the number of sperm transferred or retained at copulation in favor of relatively attractive males. In support of this prediction, we found that following solicited copulations the number of sperm inseminated is influenced exclusively by the female's perception of relative male coloration, independent of any direct manipulation of males themselves. Because females prefer brightly colored males during precopulatory mate choice, our finding that colorful males are also favored as a consequence of enhanced insemination success indicates that cryptic female choice can reinforce precopulatory preferences for extravagant male ornaments.  相似文献   

7.
In species with internal fertilization, females can 'cryptically' choose (e.g. through sperm selection) which individuals sire their offspring, even when their overt preferences for copulatory partners are overrun by male-male competition and sexual coercion. The experiment presented here reveals that control of paternity after copulation has begun is also possible in species with external fertilization. Females of the hybridogenetic Rana essonae-Rana esculenta (LL-LR) waterfrog complex adjust their clutch size in response to mate type: they release fewer eggs when amplexed by hybrid LR males who--jeopardize successful reproduction--than when amplexed by parental LL males. This reduction in the number of eggs laid can increase a female's residual reproductive value through a second mating in the same breeding season or a larger clutch size in the next year. We argue that cryptic female choice through clutch size adjustment (i) may have evolved more often than previously assumed, and (ii) can arise even where females mate only once during a reproductive period.  相似文献   

8.
In many mating systems, males strive for securing paternity through monopolizing females. As male monopolization attempts often contradict female interests, this conflict may fuel an evolutionary arms race. In the widow spider genus Latrodectus, females are commonly polyandrous, whereas males are monogynous, hence restricted to mate with a single female, making paternity protection particularly important. Potential mating plugs (specialized embolus sclerites of male copulatory organs) have been discovered in the complex female genital tracts of several Latrodectus species. In this study, we investigated mating strategies in the Mediterranean black widow spider Latrodectus tredecimguttatus and tested the adaptive value of female attacks against male monopolization efforts. In a double mating experiment, we manipulated the number of insertions (=copulations) for first and second males to assess female behaviour and male embolus sclerite placement success. Our results indicate that first males′ embolus sclerites inside the females′ sperm stores physically block sclerites of subsequent males. While female attacks did not affect the deposition of potential mating plugs, they significantly reduced copulation duration. Irrespective of female aggression, male sclerite placement failure occurred frequently, but large males were more successful than smaller competitors. We suggest that the complex genital morphology in both sexes may have co‐evolved antagonistically and female morphology could serve to favour large males for fertilization.  相似文献   

9.
Post‐copulatory associations between males and females have been found in a variety of insects and are often described as mate guarding. Males of the West Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire) mount the female's back after copulation. Two hypotheses have been advanced to explain this behavior: mate guarding to prevent future copulations by rivals (hypothesis 1), and mate guarding to gain additional copulations (hypothesis 2). We conducted three experiments to test predictions from these hypotheses. Our results disproved hypothesis 1 because the duration of the post‐copulatory association was very brief in comparison with the length of the refractory phase all females showed after copulation. When we prevented females from resisting copulations during the post‐copulatory mounted phase males copulated again, while under normal conditions, a second copulation was never observed. This result may indicate the presence of a sexual conflict over mating. However, we propose an alternative interpretation of the result, namely that after mating, males test whether the copulation has successfully reduced female receptivity by attempting to remate. If females resist the mating, males leave.  相似文献   

10.
Females of many species mate with multiple males (polyandry), resulting in male–male competition extending to post‐copulation (sperm competition). Males adapt to such post‐copulatory sexual selection by altering features of their ejaculate that increase its competitiveness and/or by decreasing the risk of sperm competition through female manipulation or interference with rival male behaviour. At ejaculation, males of many species deposit copulatory plugs, which are commonly interpreted as a male adaptation to post‐copulatory competition and are thought to reduce or delay female remating. Here, we used a vertebrate model species, the house mouse, to study the consequences of copulatory plugs for post‐copulatory competition. We experimentally manipulated plugs after a female's first mating and investigated the consequences for rival male behaviour and paternity outcome. We found that even intact copulatory plugs were ineffective at preventing female remating, but that plugs influenced the rival male copulatory behaviour. Rivals facing intact copulatory plugs performed more but shorter copulations and ejaculated later than when the plug had been fully or partially removed. This suggests that the copulatory plug represents a considerable physical barrier to rival males. The paternity share of first males increased with a longer delay between the first and second males' ejaculations, indicative of fitness consequences of copulatory plugs. However, when males provided little copulatory stimulation, the incidence of pregnancy failure increased, representing a potential benefit of intense and repeated copulation besides plug removal. We discuss the potential mechanisms of how plugs influence sperm competition outcome and consequences for male copulatory behaviour.  相似文献   

11.
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males. Thus, an integrative view of sexual selection needs to encompass processes that occur not only before copulation (pre-mating), but also during copulation (peri-mating), as well as after copulation (post-mating), all of which can generate differences in reproductive success. By encompassing mechanisms of sexual selection across all of these sequential reproductive stages this review takes an integrative approach to sexual selection in Tribolium flour beetles (Coleoptera: Tenebrionidae), a particularly well-studied and economically important model organism. Tribolium flour beetles colonize patchily distributed grain stores, and juvenile and adult stages share the same food resources. Adults are highly promiscuous and female reproduction is distributed across an adult lifespan lasting approximately 1 year. While Tribolium males produce an aggregation pheromone that attracts both sexes, there appears to be little pre-mating discrimination among potential mates by either sex. However, recent work has revealed several peri-mating and post-mating mechanisms that determine how offspring paternity is apportioned among a female's mates. During mating, Tribolium females reject spermatophore transfer and limit sperm numbers transferred by males with low phenotypic quality. Although there is some conflicting evidence, male copulatory leg-rubbing appears to be associated with overcoming female resistance to insemination and does not influence a male's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection.  相似文献   

12.
We demonstrate that extending copulation enhances probability of paternity in sand lizards and that determinants of copulation duration depend on a males' mating order (first or second). First males, with no information on presence of rivals, extend copulation when mating with a more fecund female. Second males, however, adjust copula duration in relation to a first male's relatedness with his female, which there is reason to believe can be deduced from the MHC-related odor of the copulatory plug. Male-female relatedness negatively influences a male's probability of paternity, and when second males are in a favored role (i.e., the first male is the one more closely related to the female), second males transfer larger ejaculates, resulting in higher probability of paternity. This result corroborates predictions from recent theoretical models on sperm expenditure theory incorporating cryptic female choice and sexual conflict. More specifically, the results conform to a "random roles" model, which depicts males as being favored by some females and disfavored by others, but not to a "constant-type" model, in which a male is either favored or disfavored uniformly by all females in a population.  相似文献   

13.
Abstract. When females are inseminated by multiple males, male paternity success (sperm precedence) is determined by the underlying processes of sperm storage and sperm utilization. Although informative for many questions, two-male sperm competition experiments may offer limited insight into natural mating scenarios when females are likely to mate with several males. In this study, genetic markers in Tribolium castaneum are used to trace paternity for multiple sires, and to determine whether displacement of stored sperm that occurs after a third mating equally affects both previous mates, or if fertilizations are disproportionately lost by the female's most recent mate. For 20 days after triple-matings, first males retain significantly higher paternity success (relative to first male paternity in double-matings) compared with second males. These results demonstrate that when females remate before sperm mixing occurs, sperm stratification results in differential loss of sperm from the most recent mate. This study provides insight into the mechanisms underlying sperm precedence in a promiscuous mating system, and suggests that T. castaneum females could limit paternity success of particular mates by remating with more highly preferred males.  相似文献   

14.
Extra-pair copulations (EPCs) (copulations outside the pair bond) resulting in extra-pair fertilizations (EPFs) are widespread in birds. To increase reproductive success, males should not only seek EPCs, but also prevent their females from having EPFs. Male Seychelles warblers (Acrocephalus sechellensis) follow their partner closely during the period when these females are most receptive (fertile period). The Seychelles warbler is the first species to offer explicit experimental evidence that mate guarding functions as paternity guarding: in territories where free-living males were induced to stop mate guarding during the pair female''s fertile period, the rates of intrusions by other males and successful EPCs (male mounting female) were significantly higher than those observed in the control group and in the absence of mate guarding the frequency of successful EPCs increased significantly with local male density. Male warblers do not assure their paternity through frequent copulations to devalue any sperm from other males: males do not copulate with their partners immediately following a successful EPC obtained by their partners, the frequency of successful within-pair copulations does not increase with the frequency of successful EPCs and females initiate all successful copulations and are capable of resisting copulation attempts.  相似文献   

15.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

16.
When females mate with more than one male during their reproductive cycle, males may increase their share of paternity by copulating repeatedly with the same female. Accordingly, males should mate repeatedly with the same female more frequently when the risk of sperm competition is greater. We examined this idea experimentally in the orb-web spiderNephila edulis , which is characterized by both extreme sexual size dimorphism and extreme male size variation. Comparison of the mating behaviour of solitary and pairs of males on the webs of virgin and mated females revealed that males adjust the frequency and duration of copulation according to the mating history of the female and the presence of rival males. Males copulated more frequently and for longer with virgin than mated females. The copulation behaviour of males in the presence of rivals depended upon their relative size. Typically, larger males prevented smaller rivals from gaining access to the female and therefore were able to copulate more frequently. Smaller males copulated less frequently, but for longer periods, which may have increased their share of paternity. The size of male N. edulis can vary by an order of magnitude, and our results suggest that this variation may be maintained by the alternative size-dependent strategies of preventing or winning sperm competition. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

17.
As evidence mounts that male genitalia can affect relative fertilisation success, the role that sexual selection has played in the rapid and divergent evolution of genitalia is becoming increasingly recognized. Unfortunately, the limited functional understanding of these complex structures and their interactions with the female reproductive tract often limit interpretation regarding their evolution. Here, we address this issue using the earwig Euborellia brunneri, where both the male intromittent organ and the female spermatheca are highly exaggerated in length yet structurally simple. In a double mating design, we use the sterile male technique to study how sperm precedence patterns are affected by male genital length, male age, and the size of the male sperm storage organ, the seminal vesicle. Relative fertilisation success exhibited considerable variation around modest last-male paternity. Only an interaction between first and second male genital length affected paternity, where males gained reduced paternity when preceded by rivals with longer genitalia. Longer genitalia confer defensive benefits in sperm competition by apparently depositing ejaculate deeper in the tubular spermatheca, safe from removal by rivals. Paternity similarly depended on an interaction between the ages of both males, likely mediated by sperm traits as testes size decreased with age. Seminal vesicle size showed positive allometry but did not affect paternity; instead, greater seminal vesicle size in last males expedited oviposition. The exaggerated yet relatively simple genitalia of E. brunneri facilitate an unusually clear example of post-copulatory selection on phenotypic variation in multiple reproductive traits.  相似文献   

18.
Male redback spiders (Latrodectus hasselti) maximize paternity if they copulate twice with their cannibalistic mate. Facilitating cannibalistic attack during their first copulation yields paternity benefits. However, females have paired sperm-storage organs inseminated during two separate copulations, so males that succumb to partial cannibalism during the first copulation lose at least 50% of their paternity to rivals. In this paper, we describe a novel male trait--an abdominal constriction that appears during courtship--that allows males to survive and mate with females for a second time, despite the substantial cannibalistic damage inflicted during the first copulation. Constricted males that were wounded to simulate early cannibalism had higher endurance, greater survivorship, longer subsequent courtship and higher mating success than wounded males that were not constricted. Constriction was not found in a non-sacrificial congener that rarely survived simulated cannibalism, and the protective effect of constriction in redbacks was specific to the type of damage inflicted by females during the first copulation. Thus, the abdominal constriction allows males to overcome the potential fitness limit imposed by their own suicidal strategy-paradoxically, by prolonging survival across two cannibalistic copulations.  相似文献   

19.
Males of many animal species engage in courtship behaviours during and after copulation that appear to be solely aimed at stimulating the female. It has been suggested that these behaviours have evolved by cryptic female choice, whereby females are thought to impose biases on male postmating paternity success. Males of the red flour beetle Tribolium castaneum rub the lateral edges of the females' elytra with their tarsi during copulation. We manipulated female perception of this behaviour by tarsal ablation in males, thus preventing males from reaching the edge of the female elytra with their manipulated legs, and by subsequently performing a series of double-mating experiments where the copulatory behaviour was quantified. We found a positive relationship between the intensity of the copulatory courtship behaviour and relative fertilization success among unmanipulated males. This pattern, however, was absent in manipulated males, where female perception of male behaviour differed from that actually performed. Thus, female perception of male copulatory courtship behaviour, rather than male behaviour per se, apparently governs the fate of sperm competing over fertilizations within the female, showing that copulatory courtship is under selection by cryptic female choice.  相似文献   

20.
During the spring emergence of red‐sided garter snakes (Thamnophis sirtalis parietalis) in Manitoba, Canada, the operational sex ratio is strongly skewed towards males, who scramble to locate and court newly emerged females. A high frequency of multiple paternity litters suggests that the females are promiscuous; the gelatinous copulatory plugs (CPs) deposited by males may confer fitness benefits via passive mate guarding. Because precopulatory female choice is limited in large mating aggregations, sexual conflict may place a premium on preventing females from ejecting male sperm. In snakes, sperm are produced in the testes and delivered through the ductus deferens, and the CP is thought to be produced by the renal sexual segment and conveyed through the ureter. We manipulated the delivery of the two fluids separately by surgically ligating the ducts. Ureter‐ligated males did not produce a CP, causing their sperm to leak out of the female's cloaca immediately after copulation. Contrary to previous suggestions, histology revealed sperm distributed throughout the CP. Thus, the CP may function as a spermatophore: the protein matrix contains the sperm, which are liberated gradually as the plug dissolves. The likelihood of a male depositing a CP fell significantly after his second mating, perhaps limiting his reproductive success. These results challenge the hypothesis that passive mate guarding is the primary function of the CP in T. sirtalis parietalis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 893–907.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号