首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To analyse a role of the factor of a genetic fundamentals of cells in formation of radiation-induced genome instability (RIGI) we investigated a condition of DNA pattern, content of superoxide anion-radical O2*- and a sum of reactive oxigen species (ROS) (O2*-, OH*, H2O2), and also catalase activity in bone marrow cells of male and female mice of 101/H strain in the norm and at once after chronic (10 day) exposure to 200 mGy gamma-radiation. Thus we based on conception about a significance of mechanisms of DNA repair and production of reactive oxygen species (ROS) in development of radiation-induced genome instability (RIGI), and also on the data on sex bound differences in efficiency of DNA repair in reply to impact of the genotoxic agents for male and female mice of 101/H strain. Sex connected differences in redox system of bone marrow cells were established. In males lower catalase activity was found in the norm, with considerable increase of the activity and the content of ROS after chronic irradiation with a low dose (200 mGy); at the same time a direct correlation between the ROS content and catalase activity occurred. In female, which have higher DNA repair potential, higher level of catalase activity was found in the norm, with reduction after irradiation and lower, than in male, level of O2*- content; no changes in the general ROS content, or direct correlation between the content of a superoxide anion-radical (O2*-) and the sum of ROS were observed. The detected differences between male and female the studied parameters in the norm and after irradiation indicate a connection of the studied characteristics and their changes with a sex, confirm the literature data about a significance of the factor of a genetic fundamentals of bioobject in formation of radiation-induced genome instability.  相似文献   

3.
Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor   总被引:4,自引:0,他引:4  
The aim of this study was to elucidate cellular mechanisms involved in ceramide-induced apoptosis and its attenuation by hepatocyte growth factor (HGF). Human retinal pigmented epithelial cells (RPE) incubated with C2 ceramide accumulated reactive oxygen species (ROS) in mitochondria and underwent apoptosis in a dose-dependent manner. Ceramide-treated cells showed increased caspase-3 activation and an increase in mitochondrial membrane permeability transition (MPT). Low doses of H2O2 (100 microM) alone induced negligible apoptosis; however, ceramide-induced apoptosis was significantly enhanced by co-incubation with H2O2 (100 microM). Furthermore, ceramide treatment significantly decreased catalase enzymatic activity and protein expression. HGF pretreatment (20 ng/ml) significantly inhibited ceramide-induced apoptosis and reduced the accumulation of ROS, the activation of caspase-3, and the increase in MPT and prevented the reduction in catalase activity and expression. Together, the data suggest that ceramide induces apoptosis in RPE cells by increasing ROS production, MPT, and caspase-3 activation. The ceramide effect is potentiated by H2O2 and associated with a reduction in catalase activity, suggesting that catalase plays a central role in regulating this apoptotic response. The ability of HGF to attenuate these effects demonstrates its effectiveness as an antioxidant growth factor.  相似文献   

4.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

5.
The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. A search of publicly available microarray data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O(2)(-)) to hydrogen peroxide (H(2)O(2)), is consistently increased in high-grade and advanced-stage bladder tumors. We aimed to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both nonmetastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H(2)O(2) production in the 253J B-V cell line. Expression of the prometastatic and proangiogenic factors matrix metalloproteinase 9 (MMP-9) and vascular endothelial-derived growth factor (VEGF), respectively, was upregulated in the metastatic line. Expression of both MMP-9 and VEGF was shown to be H(2)O(2)-dependent, as removal of H(2)O(2) by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive protumorigenic and prometastatic genes such as VEGF and MMP-9.  相似文献   

6.
7.
Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H2O2 doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m2) or H2O2 (7.5mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H2O2. Cell viability was also significantly better preserved in VST cells than VC cells after UV or H2O2 exposures. Following 3-AT treatment of VST cells, UVC radiation or H2O2 brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability.  相似文献   

8.
We examined the ability of two recombinant human cytokines, granulocyte-macrophage colony-stimulating factor (rHu-GM-CSF) and interferon-gamma (rHu-IFN-gamma) to activate antibacterial mechanisms in human pulmonary macrophages (PM) and peripheral blood monocytes (PBM). Growth of Legionella pneumophila (LP) was assessed in PM or PBM which had been exposed to either rHu-IFN-gamma (500-1000 u/ml) or rHu-GM-CSF (1 to 10,000 u/ml). In both PM and PBM exposed to 500 u/ml rHu-IFN-gamma, growth of LP was reduced compared to cells exposed to media alone. By comparison, exposure of these cell types to rHu-GM-CSF had no detectable effect on bacterial replication. In order to investigate potential mechanisms accounting for this observation, the effect of these cytokines on the hydrogen peroxide (H2O2)-releasing capacity of cells was studied. Exposure of PM and PBM to rHu-IFN-gamma (500 to 1000 u/ml) resulted in increased production of H2O2 triggered by phorbol myristate acetate; when subjected to the same experimental conditions, rHu-GM-CSF-exposed cells exhibited no increase in H2O2 production. To further clarify the role of rHu-IFN-gamma-induced augmentation of oxidative metabolism on cellular inhibition of bacterial growth, an amount of catalase capable of completely neutralizing extracellular H2O2 was added to cells before and during infection. This did not abrogate the antibacterial activity of rHu-IFN-gamma. These studies demonstrate that rHu-IFN-gamma but not rHu-GM-CSF is capable of augmenting the capacity of PM and PBM to restrict LP growth. These data suggest that the antibacterial activity of rHu-IFN-gamma in this system may involve oxidative as well as nonoxidative mechanisms.  相似文献   

9.
We assessed the catalase bioactivity and hydrogen peroxide (H(2)O(2)) production rate in human breast cancer (HBC) cell lines and compared these with normal human breast epithelial (HBE) cells. We observed that the bioactivity of catalase was decreased in HBC cells when compared with HBE cells. This was also accompanied by an increase in H(2)O(2) steady-state levels in HBC cells. Silencing the catalase gene led to a further increase in the steady-state level of H(2)O(2) which was also accompanied by an increase in growth rate of HBC cells. Catalase activity was up regulated on treatment with superoxide (O(2)(-)) scavengers such as pegylated SOD (PEG-SOD, indicating inhibition of catalase by the increased O(2)(-) produced by HBC cells. Transfection of either catalase or glutathione peroxidase to HBC cells decreased intracellular H(2)O(2) levels and led to apoptosis of these cells. The H(2)O(2) produced by HBC cells inhibited PP2A activity accompanied by increased phosphorylation of Akt and ERK1/2. The importance of catalase bioactivity in breast cancer was further confirmed as its bioactivity was also decreased in human breast cancer tissues when compared to normal breast tissues. We conclude that inhibition of catalase bioactivity by O(2)(-) leads to an increase in steady-state levels of H(2)O(2) in HBC cells, which in turn inhibits PP2A activity, leading to phosphorylation of ERK 1/2 and Akt and resulting in HBC cell proliferation.  相似文献   

10.
In Arabidopsis thaliana cells, hypoosmotic treatment initially stimulates Ca2+ influx and inhibits its efflux and, concurrently, promotes a large H2O2 accumulation in the external medium, representative of reactive oxygen species (ROS) production. After the first 10-15 min, Ca2+ influx rate is, however, lowered, and a large rise in Ca2+ efflux, concomitant with a rapid decline in H2O2 level, takes place. The drop of the H2O2 peak, as well as the efflux of Ca2+, are prevented by treatment with submicromolar concentrations of eosin yellow (EY), selectively inhibiting the Ca2+-ATPase of the plasma membrane (PM). Comparable changes of Ca2+ fluxes are also induced by hyperosmotic treatment. However, in this case, the H2O2 level does not rise, but declines below control levels when Ca2+ efflux is activated. Also K+ and H+ net fluxes across the PM and cytoplasmic pH (pH(cyt)) are very differently influenced by the two opposite stresses: strongly decreased by hypoosmotic stress and increased under hyperosmotic treatment. The H2O2 accumulation kinetics, followed as a function of the pH(cyt) changes imposed by modulation of the PM H+-ATPase activity or weak acid treatment, show a close correlation between pH(cyt) and H2O2 formed, a larger amount being produced for changes towards acidic pH values. Overall, these results confirm a relevant role for the PM Ca2+-ATPase in switching off the signal triggering ROS production, and propose a role for the PM H+-ATPase in modulating the development of the oxidative wave through the pH(cyt) changes following the changes of its activity induced by stress conditions.  相似文献   

11.
During follicle growth swine granulosa cells are physiologically exposed to a progressive oxygen shortage. It has already been shown that hypoxia stimulates angiogenesis through an increase of VEGF production, however, despite considerable progress in the understanding of the final events induced by cellular hypoxia, the signal transduction pathway remains elusive. Recent evidence suggest a role for Reactive Oxygen Species (ROS) as hypoxia signal transducer. Granulosa cells were isolated from pig follicles (> 5 mm) and cultured for 18 h in normoxic (19% O2), hypoxic (5% O2) or anoxic (1% O2) conditions. Following the incubation ROS (O2- and H2O2) production and the activity of scavenging enzymes (SOD, catalase and peroxidase) were determined. It was apparent from our data that ROS generation was reduced by hypoxia. On the contrary, SOD and peroxidase, but not catalase, increased their activity. Further studies are needed to verify whether ROS are involved in signalling hypoxia.  相似文献   

12.
Several serine proteases are directly cytotoxic. We investigated whether the cytotoxic effects of proteases are associated with increased levels of reactive oxygen species (ROS) in cells. We found that treatment of lung fibroblasts or bronchial epithelial cells with relatively high concentrations (0.1--100 U/ml) of neutrophil elastase, trypsin, and Pronase increased ROS levels in the mitochondria and cytoplasm. The protease-induced increase in ROS was associated with oxidative cellular injury as determined by generation of 8-hydroxy-2'-deoxyguanosine and malonaldehyde plus 4-hydroxyalkenal. The protease-induced increase in ROS was not merely due to cell detachment because the proteases also caused an increase in ROS in suspended cells, which precluded attachment to the extracellular matrix. The protease-induced increase in ROS appears to contribute to cytotoxicity because cell death induced by proteases was attenuated by treatment with catalase, a decomposer of H(2)O(2), and accelerated by treatment with aminotriazole, a catalase inhibitor. These results suggest that several proteases increase oxidative stress, indicating a direct interaction between proteases and ROS in mediating cytotoxicity.  相似文献   

13.
14.
Oxidative stress, resulting from accumulation of reactive oxygen species (ROS), plays a critical role on astrocyte death associated with neurodegenerative diseases. Astroglial cells produce endozepines, a family of biologically active peptides that have been implicated in cell protection. Thus, the purpose of the present study was to investigate the potential protective effect of one of the endozepines, the octadecaneuropeptide ODN, on hydrogen peroxide (H(2) O(2) )-induced oxidative stress and cell death in rat astrocytes. Incubation of cultured astrocytes with graded concentrations of H(2) O(2) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by lactate dehydrogenase assay. The cytotoxic effect of H(2) O(2) was associated with morphological modifications that were characteristic of apoptotic cell death. H(2) O(2) -treated cells exhibited high level of ROS associated with a reduction of both superoxide dismutases (SOD) and catalase activities. Pre-treatment of astrocytes with low concentrations of ODN dose-dependently prevented cell death induced by H(2) O(2) . This effect was accompanied by a marked attenuation of ROS accumulation, reduction of mitochondrial membrane potential and activation of caspase 3 activity. ODN stimulated SOD and catalase activities in a concentration-dependent manner, and blocked H(2) O(2) -evoked inhibition of SOD and catalase activities. Blockers of SOD and catalase suppressed the effect of ODN on cell survival. Taken together, these data demonstrate for the first time that ODN is a potent protective agent that prevents oxidative stress-induced apoptotic cell death.  相似文献   

15.
Nerve growth factor (NGF) stimulation of pheochromocytoma PC12 cells transiently increased the intracellular concentration of reactive oxygen species (ROS). This increase was blocked by the chemical antioxidant N-acetylcysteine and a flavoprotein inhibitor, diphenylene iodonium. NGF responses of PC12 cells, including neurite outgrowth, tyrosine phosphorylation, and AP-1 activation, was inhibited when ROS production was prevented by N-acetylcysteine and diphenylene iodonium. The expression of dominant negative Rac1N17 blocked induction of both ROS generation and morphological differentiation by NGF. The ROS produced appears to be H(2)O(2), because the introduction of catalase into the cells abolished NGF-induced neurite outgrowth, ROS production, and tyrosine phosphorylation. These results suggest that the ROS, perhaps H(2)O(2), acts as an intracellular signal mediator for NGF-induced neuronal differentiation and that NGF-stimulated ROS production is regulated by Rac1 and a flavoprotein-binding protein similar to the phagocytic NADPH oxidase.  相似文献   

16.
High levels of reactive oxygen species (ROS) are associated with cytotoxicity. Alternatively, nontoxic levels of ROS like hydrogen peroxide (H(2)O(2)) can mediate the transmission of many intracellular signals, including those involved in growth and transformation. To identify pathways downstream of endogenous cellular H(2)O(2) production, the response of Rat-1 fibroblasts exhibiting differential HER-2/Neu receptor tyrosine kinase activity to removal of physiological H(2)O(2) concentrations was investigated. The proliferation of all cells was abolished by addition of the H(2)O(2) scavenger catalase to the culture medium. HER-2/Neu activity was not significantly affected by catalase treatment, suggesting that the target(s) of the H(2)O(2) signal lie downstream of the receptor in our model. ERK1/2 phosphorylation was blocked by catalase in fibroblasts expressing wild type Neu, however such a response did not occur in cells possessing activated mutant Neu. This indicates that the ERK1/2 response contributes little to the growth inhibition observed. By contrast, JNK1 activity increased following the addition of catalase or H(2)O(2), regardless of Neu activity or level of cell transformation. Phosphorylation of p38 MAPK was induced by H(2)O(2) but not by catalase. These observations suggest that scavenging of H(2)O(2) from the cellular environment blocks Rat-1 proliferation primarily through the activation of stress pathways.  相似文献   

17.
采用不同的活性氧发生源, 研究了· 、H2O2和OH·胁迫下Bacillus sp. F26以抗氧化物酶合成为特征的应激响应。结果表明, 细胞对氧胁迫的应激响应程度取决于活性氧种类、胁迫程度和形式(瞬时和持续)。Bacillus sp. F26对H2O2胁迫的响应程度最高, 过氧化氢酶的快速合成对细胞抵抗H2O2胁迫至关重要, 当细胞及时分解进入胞内的H2O2, 胁迫对细胞的氧化损伤程度并不高, 相反会刺激细胞的生长和底物消耗, 当胁迫超过过氧化氢酶的分解能力时, H2O2会迅速抑制细胞生长和过氧化氢酶合成; 由于 ·与细胞作用的方式和效果与H2O2不同, 超氧化物歧化酶和过氧化氢酶的快速合成并不能保证细胞及时有效地清除胞内的活性氧, 因此, 细胞对 ·胁迫的响应程度要低于H2O2胁迫; 在所考察的3种活性氧中, OH·胁迫(Fenton反应体系)对细胞的氧化损伤程度最大, 胁迫强烈地抑制了细胞生长和抗氧化物酶的合成。由此表明, 由于不同活性氧的化学性质有所不同, 细胞对不同种类、程度和形式的活性氧胁迫会表现出不同的生物学效应, 为了提高自身对氧胁迫的抵抗能力, 微生物会通过自身的代谢调节适应新的环境, 包括调整抗氧化物酶合成水平、改变生长速度以及底物消耗速率等。  相似文献   

18.
Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.  相似文献   

19.
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号