首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The N(6)-methyladenine (MeAde) and 5-methylcytosine (MeC) contents in deoxyribonucleic acid (DNA) of bacteriophage lambda has been analyzed as a function of host specificity. The following facts have emerged: (i) lambda grown on strains harboring the P1 prophage contain ca. 70 more MeAde residues/DNA molecule than lambda grown either in the P1-sensitive parent, or in a P1 immune-defective lysogen which does not confer P1 modification; (ii) lambda grown on strains harboring the N-3 drug-resistance factor contain ca. 60 more MeC residues/DNA molecule than lambda grown on the parental strain lacking the factor; (iii) lambda grown in Escherichia coli B strains is devoid of MeC, whereas lambda grown in a B (N-3) host contains a high level of MeC; (iv) the MeAde content in lambda DNA is not affected by the N-3 factor. These results suggest that P1 controls an adenine-specific DNA methylase, and that the N-3 plasmid controls a cytosine-specific DNA methylase. The N-3 factor has been observed previously to direct cytosine-specific methylation of phage P22 DNA and E. coli B DNA in vivo; in vitro studies presented here demonstrate this activity.  相似文献   

2.
The N-3 drug resistance (R) factor specifies a deoxyribonucleic acid (DNA)-cytosine methylase and a DNA restriction-modification (hspII) system. We have isolated three independent mutants that are conditionally defective in their ability to modify bacteriophage lambda and to methylate DNA-cytosine residues. The ratio of 5-methylcytosine to N(6)-methyladenine in bacterial DNA and in the DNA of phages lambda and fd was determined after labeling with [methyl-(3)H]methionine at various growth temperatures. Although the ability of the wild-type N-3 factor to modify phage lambda and to methylate DNA-cytosine residues was unaffected with increasing temperature, two of the mutants exhibited a parallel loss in modification and cytosine methylation ability. The ability of the third mutant to carry out these functions was dependent on the presence or absence of an amber suppressor mutation in the host genome. These results offer further support for the notion that hspII modification is mediated by a DNA-cytosine methylase. Evidence is also presented that the modification methylase is responsible for the in vivo methylation of phage fd DNA (which is not subject to hspII restriction in vivo).  相似文献   

3.
The nonrestricting/nonmodifying strain Bacillus subtilis 222 (r-m-) can be induced to synthesize a DNA-modifying activity upon treatment with either mitomycin C (MC) or UV light. This is shown by the following facts. (i) Infection of MC-pretreated 222 cells with unmodified SPP1 phage yields about 3% modified phage that are resistant to restriction in B. subtilis R (r+m+). The induced modifying activity causes the production of a small fraction of fully modified phage in a minority class of MC-treated host cells. (ii) The MC-pretreated host cells contain a DNA cytosine methylating activity: both bacterial and phage DNAs have elevated levels of 5-methylcytosine. (iii) The MC-induced methylation of SPP1 DNA takes place at the recognition nucleotide sequences of restriction endonuclease R from B. subtilis R. (iv) Crude extracts of MC-pretreated 222 cells have enhanced DNA methyltransferase activities, with a substrate specificity similar to that found in modification enzymes present in (constitutively) modifying strains.  相似文献   

4.
Mycoplasma bacteriophage L51 single-stranded DNA and L2 double-stranded DNA are host cell modified and restricted when they transfect Acholeplasma laidlawii JA1 and K2 cells. The L51 genome has a single restriction endonuclease MboI site (recognition sequence GATC), which contains 5-methylcytosine when the DNA is isolated from L51 phage grown in K2 cells but is unmethylated when the DNA is from phage grown in JA1 cells. This GATC sequence is nonessential, since an L51 mutant in which the MboI site was deleted was still viable. DNA from this deletion mutant phage was not restricted during transfection of either strain K2 or JA1. Therefore, strain K2 restricts DNA containing the sequence GATC, and strain JA1 restricts DNA containing the sequence GAT 5-methylcytosine. We conclude that K2 cells have a restriction system specific for DNA containing the sequence GATC and protect their DNA by methylating cytosine in this sequence. In contrast, JA1 cells (which contain no methylated DNA bases) have a newly discovered type of restriction-modification system. From results of studies of the restriction of specifically methylated DNAs, we conclude that JA1 cells restrict DNA containing 5-methylcytosine, regardless of the nucleotide sequence containing 5-methylcytosine. This is the first report of a DNA restriction activity specific for a single (methylated) base. Modification in this system is the absence of cytosine methylating activity. A restriction-deficient variant of strain JA1, which retains the JA1 modification phenotype, was isolated, indicating that JA1 cells have a gene product with restriction specificity for DNA containing 5-methylcytosine.  相似文献   

5.
Cytosine methylation of the sequence GATC in a mycoplasma   总被引:16,自引:7,他引:9       下载免费PDF全文
Mycoplasma virus L2 is subject to host-specific restriction and modification in Acholeplasma laidlawii strains JA1 and K2. We have examined the DNAs from both host cells and viruses propagated on these strains with respect to susceptibility to cleavage by restriction endonucleases and for DNA base modifications. We show that, in strain K2 and L2 virus grown on K2 cells, cytosine in the sequence GATC is methylated to 5-methylcytosine and, although strain K2 and L2 viruses grown on K2 contain N6-methyladenine in their DNA, adenine in the sequence GATC is not methylated. In contrast to K2, strain JA1 and L2 virus grown on JA1 cells contain no detectable methylated bases. It is not known which of the methylated bases in K2 is the basis for the K2 restriction-modification system operative on L2 virus.  相似文献   

6.
The nature and content of minor bases in DNA of 3 Shigella strains are investigated. DNAs from Shigella stutzeri 2, Sh. sonnei 1188 and Sh. sonnei 311 are found to contain 0.43, 0.56 and 0.45 mol.% of N6-methyladenine respectively. 5-methylcytosine (0.16 mol.%) is discovered in Sh. sonnei 311. Substrate specificity of adenine methylase from Sh. sonnei 1188 with respect to phage DNAs of different host modification is investigated. Recognition sites for guanine methylase of DDVI phage and for adenine methylase of Sh. sonnei 1188 turned to be different. DNA of DDII phage grown in Sh. stutzeri 2 cells does not accept methyl groups under the treatment with Sh. sonnei 1188 extracts, but it is methylated by Escherichia coli extract. Adenine methylases of Sh. sonnei 1188 and Sh. stutzeri 2 are suggested to be either the same enzyme, or enzymes, which recognition sites are partially overlapped.  相似文献   

7.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.  相似文献   

8.
DNA methylase was partially purified from Escherichia coli W and used to methylate DNA from Bacillus subtilis and bacteriophage φ105. The former DNA was methylated 1.17% and the latter 0.87%. The products were 6-methyladenine (85%) and 5-methylcytosine (15%) in both cases. The methylated DNA was stable toward depurination and viscosity loss at elevated temperatures. Methylation led to a 50% decrease in transforming activity in two strains of B. subtilis and no change in a third strain. The ability of phage φ105 DNA to rescue a defective phage strain was decreased 50% by methylation. No changes were observed in the ability of methylated DNA to serve as a template for DNA polymerase or RNA polymerase. The pattern of cleavage of DNA by a variety of restriction endonucleases was not affected by methylation. There were no changes in the physicochemical properties of DNA on methylation as measured by hyperchromicity on heating, formaldehyde denaturation, viscosity, and sedimentation.  相似文献   

9.
The N6-methyladenine and 5-methylcytosine contents in the DNA of bacteriophages M13 and fd have been analyzed. The results are summarized as follows. (1) After growth in bacteria harboring the N-3ft? drug resistance-factor, fd and M13 are observed to contain approximately 1 to 2 more 5-methylcytosine residues per DNA molecule than after growth in the parental drug-sensitive host; no effect on the N6-methyladenine content is produced by the plasmid. (2) After growth in bacteria harboring P1 prophage, fd and M13 are observed to contain approximately 2 to 3 more N6-methyladenine residues per DNA molecule than after growth in the parental P1-sensitive host; no apparent effect on the 5-methylcytosine content was produced by the P1 plasmid. (3) In agreement with others, fd carrying B-host specificity (fd·B) is observed to contain 2 more N6-methyladenine residues/DNA molecule than fd·K.  相似文献   

10.
The 1 P+f phage, a virulent mutant of the moderate P+ phage for Bac. brevis var. G.-B., consists of a hexagonal head (90x90 nm) and a long non-contractile tail (340 nm). This phage is characterized by a relatively long latent period (90-110 min) and a low yield (40-50 particles per cell). The 1P+f phage is quite stable at pH values from 1 to 11, insensitive to osmotic shock, treatment with chloroform and acridine orange. The sensitivity of the phage to thermal treatment and UV-radiation has been studied. The nucleic acid of the P+f phage is double-stranded DNA of AT-type (GC equals 34.5 mole %) which contains 5-methylcytosine (0.18 mole %) and N6-methyladenine (0.32 mole%). The level of methylation of cytosine and adenine residues in DNA of the 1 P+f phage does not depend on the host studied (Bac. brevis, P- and S variants). The specificity of methylation of cytosine residues in the S and P- cells appears to be the same. DNA of the 1 P+f phage strongly differs from DNA of the host in nucleotide composition (GC equals 45.7 mole %). Nevertheless, phage DNA is very similar to DNA from Bac. subtilis in the character of pyrimidine distribution (the amount of different pyrimidine isopliths). This may testify to a somewhat common character of the nucleotide sequence organization in DNA of the phage and its host.  相似文献   

11.
Summary The content of 5-methylcytosine (5MC) and 6-methyladenine (6MA) in modified and nonmodified DNAs from B. subtilis and B. subtilis phage SPP1 were determined. Nonmodified SPP1 · O DNA contains about 15 5MC residues/molecule. Each modified SPP1 ·R DNA molecule carries 190 modification specific methyl groups. This number is sufficient to account for modification of the 80 restriction sites in SPP1 DNA (Bron and Murray, 1975) against endo R · Bsu R, assuming each modified site contains two 5MC residues. Resistance of SP01 DNA against endo R · Bsu R restriction both in vivo and in vitro is probably not due to methylation of endo R·Bsu R recognition sites.  相似文献   

12.
Modification of gonococcal deoxyribonucleic acid (DNA) was investigated, and the relationship with endonuclease production was explored. Both chromosomal and plasmid DNA from different gonococcal strains, irrespective of their plasmid content, was poorly cleaved by the restriction endonucleases HaeII, HaeIII, SacII, and BamHI. The fragment pattern of the Tn3 segment present on the 7.2-kilobase gonococcal resistance plasmid, when compared to its known DNA sequence, allowed us to conclude that the HaeIII and BamHI resistance was due to modification of these sites. A comparison of the fragment pattern of the resistance plasmid, when isolated from Escherichia coli or Neisseria gonorrhoeae, revealed that the resistance of HaeII must also be due to modification of its recognition sequence. Isoschizomers of HaeII and HaeIII can be found in isolates of N. gonorrhoeae (NgoI and NgoII, respectively). A new restriction endonuclease in gonococci, NgoIII, with a specificity similar to SacII, is reported here. High-pressure liquid chromatography of gonococcal DNA showed the presence of 5-methylcytosine. It is suggested that the methylation of cytosine residues in the HaeII (NgoI), HaeIII (NgoII), and SacII (NgoIII) recognition sites is the basis for the resistance of gonococcal DNA to cleavage by these enzymes. This methylation may be part of a host restriction modification system. In two out of five gonococcal strains the sequence -GATC- was modified. One strain unable to modify this sequence was a spontaneous mutant of a strain carrying such a modifying function.  相似文献   

13.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

14.
Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.  相似文献   

15.
The restriction enzyme Bsp TI, an isoschizomer of Hae III (recognition site GGCC), has been detected in eight strains of serotype 5a5b and two serotype 3 strains of the entomopathogenic bacterium Bacillus sphaericus . Strains from other serotypes contained the enzymes Bsp TII and Bsp TIII, which digested pBR322 DNA into similar banding patterns after agarose gel electrophoresis but differed in their susceptibility to methylation of the substrate. Strains from serotypes 9, 25 and 26a26b were lacking in restriction enzyme activity. There was little correlation between phage typing and restriction enzyme activity, suggesting that restriction and modification are not responsible for phage specificity among entomopathogenic B. sphaericus strains.  相似文献   

16.
N6-METHYLADENINE (6-MeAde) and 5-methylcytosine occur as minor bases in bacterial and phage DNA1–7 and seem to result from the selective methylation of adenine and cytosine residues by specific DNA methylases8. Methylation is the final stage in DNA synthesis and is essential for the phenomenon of host modification of phages9–11; it is one of the mechanisms controlling DNA replication in the cell12, 13. A study of the distribution of minor bases in DNA is therefore important not only for the elucidation of the specificity and mechanism of action of DNA methylases but also for an understanding of the purpose of this methylation. We believe that in Escherichia coli, DNA methylase exerts its action on adenine residues in chain terminating triplets: 6-MeAde may serve as a signal for gene termination in this system.  相似文献   

17.
The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes.  相似文献   

18.
We have analyzed the susceptibility of the deoxyribonucleic acid (DNA) of phage fd replicative form (RF) and of Escherichia coli to in vitro cleavage by purified RII restriction endonuclease (R. Eco RII). The results are summarized as follows: (i) fd, mec- RFI, isolated from infected E. coli K-12 mec- bacteria (a mutant strain lacking DNA-cytosine methylase activity), is cleaved into at least two fragments, whereas fd. mec+ RFI, isolated from the parental mec+ strain, is not cleaved. (ii) E. coli mec- DNA is extensively degraded, whereas mec+ DNA-cytosine methylase acts as an RII modification enzyme.  相似文献   

19.
P Wang  S S Harvey  P F Sims  P Broda 《Gene》1992,119(1):127-129
Streptomyces cyaneus genomic DNA ligated into either lambda phage or plasmid vectors was very inefficiently cloned into standard Escherichia coli host strains. However, the same material could be efficiently cloned using Mcr-deficient E. coli strains. These results suggest that the S. cyaneus genome contains 5-methylcytosine residues, some of which occur within the recognition sequences of the E. coli Mcr restriction system.  相似文献   

20.
Deoxyribonucleic acid methylation in mycobacteria.   总被引:1,自引:1,他引:0       下载免费PDF全文
Deoxyribonucleic acid modification in six strains of mycobacteria was investigated. The presence of 5-methylcytosine in the virulent strain Mycobacterium tuberculosis H37Rv and its absence in the avirulent strain M. tuberculosis H37Ra and other saprophytic, fast-growing mycobacteria appear to be the salient features. However, deoxyribonucleic acid from M. smegmatis SN2 lysogenized with the temperature phage I3 showed the presence of 5-methylcytosine. All of the strains had N6-methyladenine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号