首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Generalist predators are important contributors to reliable conservation biological control. Indirect interactions between prey species that share a common generalist predator can influence both community dynamics and the efficacy of biological control. 2. Laboratory cage experiments investigated the impact of the combined consumptive and non-consumptive effects of predation by adult Hippodamia convergens as a shared predator on the population growth and relative abundance of Acyrthosiphon pisum and Aphis gossypii as prey species. Predation pressure and prey density were varied. 3. At low predation pressure the indirect interaction between aphid species was asymmetrical with a proportionally greater negative impact of predation on A. gossypii than on A. pisum. At intermediate predation pressure, the indirect interaction became symmetrical. At high predation pressure and higher levels of prey density, it was asymmetrical with greater negative impact on A. pisum, often driven to local extinction while A. gossypii populations persisted. 4. A linear mixed-effects model including early population growth of both aphid species and predation pressure explained 96% and 92% of the variation in the population growth of A. pisum and A. gossypii, respectively, over an 8-day period. The overall effect of shared predation on the indirect interaction between the two aphid species is best described as apparent commensalism, where A. pisum benefited from early population growth of A. gossypii, while A. gossypii was unaffected by early population growth of A. pisum. Considering these indirect interactions is important for conservation biological control efforts to be successful.  相似文献   

2.
Aya Yamaguchi  Osamu Kishida 《Oikos》2016,125(2):271-277
Intrapopulation size variation strongly influences ecological interactions because individuals belonging to different size groups have distinct functions. Most demonstrations of the impacts of size variation in trophic systems have focused on size variation in predator species, and the consequences of size variation in prey species are less well understood. We investigated how prey size structure shapes intra‐ and interspecific interactions in experiments with a gape‐limited predator (larvae of the salamander Hynobius retardatus) and its heterospecific prey (frog tadpoles, Rana pirica). We found that large and small tadpole size groups each increased mortality in the other group by intensifying salamander predation; this type of indirect interactions is called apparent competition. The antagonistic impacts on the prey size groups were caused by different size‐specific mechanisms. By consuming small tadpoles, the salamanders grew large enough to consume large tadpoles. The activity of large tadpoles, by increasing the activity of the small tadpoles, may increase the number of encounters with the predator and thus small tadpole mortality. These results suggest that the magnitude of a predator's ecological role, such as whether a top–down trophic cascade is initiated, depends on size variation in its heterospecific prey.  相似文献   

3.
In prey communities with shared predators, variation in prey vulnerability is a key factor in shaping community dynamics. Conversely, the hunting efficiency of a predator depends on the prey community structure, preferences of the predator and antipredatory behavioural traits of the prey. We studied experimentally, under seminatural field conditions, the preferences of a predator and the antipredatory responses of prey in a system consisting of two Myodes species of voles, the grey-sided vole (M. rufocanus Sund.) and the bank vole (M. glareolus Schreb.), and their specialist predator, the least weasel (Mustela nivalis nivalis L.). To quantify the preference of the weasels, we developed a new modelling framework that can be used for unbalanced data. The two vole species were hypothesised to have different habitat-dependent vulnerabilities. We created two habitats, open and forest, to provide different escape possibilities for the voles. We found a weak general preference of the weasels for the grey-sided voles over the bank voles, and a somewhat stronger preference specifically in open habitats. The weasels clearly preferred male grey-sided voles over females, whereas in bank voles, there was no difference. The activity of voles changed over time, so that voles increased their movements immediately after weasel introduction, but later adjusted their movements to times of lowered predation risk. Females that were more active had an elevated mortality risk, whereas in the case of males, the result was the opposite. We conclude that, in vulnerability to predation, the species- or habitat-specific characteristics of these prey species are playing a minor role compared to sex-specific characteristics.  相似文献   

4.
Sediment derived from agriculture and development increases water turbidity and threatens the health of inshore coral reefs. In this study, we examined whether suspended sediment could change predation patterns through a reduction in visual cues. We measured survivorship of newly settled Chromis atripectoralis exposed to Pseudochromis fuscus, a common predator of juvenile damselfishes, in aquaria with one of four turbidity levels. Increased turbidity led to a nonlinear response in predation patterns. Predator-induced mortality was ~50 % in the control and low turbidity level, but exhibited a substantial increase in the medium level. In the highest turbidity level, predation rates declined to the level seen in the control. These results suggest an imbalance in how the predator and prey cope with turbidity. A turbidity-induced change to the outcome of predator–prey interactions represents a major change to the fundamental processes that regulate fish assemblages.  相似文献   

5.
Behavioral interactions between a cyclopoid copepod predator and its prey   总被引:4,自引:0,他引:4  
Behavioral observations on the predatory interactions betweenMesocyclops edax and several different types and sizes of preyrevealed that prey size alone was less important than otherspecific morphological and behavioral characteristics of theprey in deterring successful predation by the copepod. The behavioralresponses of Bosmina and Asplanchna to an attacking copepodwere passive and consisted of a simple retraction of vulnerableswimming appendages which made the prey more difficult to grasp.Daphnia and Diaphanosoma on the other hand exhibited very activeswimming escape responses. Tropocyclops usually avoided M. edaxby fleeing before the larger predator could detect them. Thehard carapaces of Daphnia, Bosmina and Keratella were effectiveat reducing ingestion following capture by M. edax. The resultsof these behavioral observations were supported by enclosureexperiments in which the predator was offered a choice betweentwo prey simultaneously. Cyclopoid copepods are capable of successfullyattacking, capturing and ingesting prey organisms several timestheir own body length. Although size alone may influence thepreference of cyclopoid copepods on large and small individualsof the same or similar prey species, it is not a dependabledeterminant of the preference of cyclopoids on multispecificprey assemblages. 1Present address: Department of Biology, Williams Hall No. 31,Lehigh University, Bethlehem, PA 18015, USA  相似文献   

6.
1. In order to understand the relative importance of prey quality and mobility in indirect interactions among alternative prey that are mediated by a shared natural enemy, the nutritional quality of two common prey for a generalist insect predator along with the predator's relative preference for these prey was determined. 2. Eggs of the corn earworm Helicoverpa zea (Lepidoptera: Noctuidae) were nutritionally superior to pea aphids Acyrthosiphum pisum (Homoptera: Aphididae) as prey for big‐eyed bugs Geocoris punctipes (Heteroptera: Geocoridae). Big‐eyed bugs survived four times as long when fed corn earworm eggs than when fed pea aphids. Furthermore, only big‐eyed bugs fed corn earworm eggs completed development and reached adulthood. 3. In two separate choice experiments, however, big‐eyed bugs consistently attacked the nutritionally inferior prey, pea aphids, more frequently than the nutritionally superior prey, corn earworm eggs. 4. Prey mobility, not prey nutritional quality, seems to be the most important criterion used by big‐eyed bugs to select prey. Big‐eyed bugs attacked mobile aphids preferentially when given a choice between mobile and immobilised aphids. 5. Prey behaviour also mediated indirect interactions between these two prey species. The presence of mobile pea aphids as alternative prey benefited corn earworms indirectly by reducing the consumption of corn earworm eggs by big‐eyed bugs. The presence of immobilised pea aphids, however, did not benefit corn earworms indirectly because the consumption of corn earworm eggs by big‐eyed bugs was not reduced when they were present. 6. These results suggest that the prey preferences of generalist insect predators mediate indirect interactions among prey species and ultimately affect the population dynamics of the predator and prey species. Understanding the prey preferences of generalist insect predators is essential to predict accurately the efficacy of these insects as biological control agents.  相似文献   

7.
The beneficial effect of food supplements in supporting populations of generalist arthropod predators in agricultural systems has been shown to enhance pest control. When providing additional foods in a crop that is attacked by an omnivorous pest, food supplements may be available to both pest and predator populations resulting in more complex interactions. We assessed the consequences of adding extra food sources to a tritrophic system in the laboratory, consisting of leaf discs of kidney bean plants (Phaseolus vulgaris), western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) and the predatory mite Amblydromalus limonicus (Acari: Phytoseiidae). The supplemental food sources tested were cattail pollen, Typha latifolia, dry decapsulated cysts of the brine shrimp, Artemia franciscana (Branchiopoda: Artemiidae) and eggs of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Larvae of F. occidentalis were observed to feed on all three food sources when applied to bean leaves. The immature development time of F. occidentalis was significantly shorter when T. latifolia pollen was provided compared to bean leaves only and bean leaves supplemented with A. franciscana or E. kuehniella. The predation rate of A. limonicus females on first instars of F. occidentalis decreased with about 30% irrespective of food type supplemented to the leaf discs. The presence of additional foods reduced antipredator behavior of F. occidentalis larvae killing predator eggs. Thrips larvae did not attack eggs of A. limonicus when cattail pollen was added to the leaf discs, whereas 2.5 predator eggs per day were consumed without food supplementation. Leaf damage decreased substantially when Typha pollen was present on the leaf discs. The findings of this study indicate that food supplementation shifts tritrophic interactions both top-down and bottom-up and may affect the outcome of an augmentative biological control program.  相似文献   

8.
In nature, animals are classified into two large groups. Those that form the prey and that form the predator. A prey animal runs for its life when chased by a predatory animal. When prey animals escape from the chasing enemy, they generally use two types of evasive motion. Those are a straight-line escape motion and a zigzag-line escape motion. A fleeing prey switches between two types of evasive behavior in a manner depending on the predator's performance.I propose a mathematical model that expresses behaviors between a prey and a predator. This model brings that a straight-line escape motion is a better solution for an escape from a slow and far predator. On the other hand, an evasive motion for a near or fast enemy is a zigzag-line escape motion. This model suggests that animals have the best evasive strategy.  相似文献   

9.
Natural enemies of plants have the potential to influence the dynamics of plant populations and the structure of plant communities. In diverse tropical forests, research on the effects of plant enemies has largely focused on the diversity-enhancing effects of highly specialized enemies, while the community-level effects of enemies with broader diets have rarely been considered. We investigated the community of insect seed predators interacting with seven tree species in the family Lauraceae on Barro Colorado Island (Panama). We present one of the first quantitative food webs for pre-dispersal insect seed predators and their host plants, and use the information in the web to assess the potential for indirect interactions between the tree species. Our data suggest that there is high potential for indirect interactions between Lauraceae species via their shared seed predators. The strength and direction of these interactions are largely unrelated to the phylogenetic distance and trait similarity between species but are likely governed by the volume of fruit produced by each tree species.  相似文献   

10.
A stochastic discrete time model of a two prey, one predator interaction, an extension of one and two species models proposed by Leslie (1958) and Leslie and Gower, 1958, Leslie and Gower, 1960, is studied. Monte Carlo simulations and the stability properties of the analogous continuous time deterministic model suggest the following hypotheses. (1) The two prey, one predator interaction is in general unstable. The range of parameters allowing coexistence of all three species is small. (2) Deterministically the predator always survives. (3) If the parameters defining the effects of density on the rates of population growth are large, the simulations lead to the rapid extinction of all three species or all but one of the prey species even if the interaction is deterministically stable. (4) The outcome of this three species interaction is largely probabilistic over a wide range of parameters. (5) A prey species with a competitive advantage over a second prey species may still find it difficult to invade and displace the second prey species if the density of the second prey species is high. Increasing the density of the predator offsets this numerical advantage somewhat. (6) The introduction of a predator common to two noncompeting species of prey usually leads to the extinction of one of the prey species. (7) In a stable two prey, one predator interaction the fluctuations of the two prey species are nonperiodic and erratic. The fluctuations of the rarer prey species are damped relative to the commoner species and the fluctuations of the rarer prey species behave as if the series has no fixed mean abundance. The predator population fluctuates with a remarkably constant period. The relevance of these hypotheses to the problem of relating population stability and persistence with the number of species in a community is discussed.  相似文献   

11.
Many organisms possess chemical defences against their natural enemies, which render them unpalatable or toxic when attacked or consumed. These chemically‐defended organisms commonly occur in communities with non‐ or less‐defended prey, leading to indirect interactions between prey species, mediated by natural enemies. Although the importance of enemy‐mediated indirect interactions have been well documented (e.g. apparent competition), how the presence of prey chemical defences may affect predation of non‐defended prey in terrestrial communities remains unclear. Here, an experimental approach was used to study the predator‐mediated indirect interaction between a chemically‐defended and non‐defended pest aphid species. Using laboratory‐based mesocosms, aphid community composition was manipulated to include chemically‐defended (CD) aphids Brevicoryne brassicae, non‐defended (ND) aphids Myzus persicae or a mixed assemblage of both species, on Brassica oleracea cabbage plants, in the presence or absence of a shared predator (Chrysoperla carnea larvae). Aphid population growth rates, aphid distributions on host plants and predator growth rates were measured. In single‐species treatments, C. carnea reduced M. persicae population growth rate, but had no significant impact on B. brassicae population growth rate, suggesting B. brassicae chemical defences are effective against C. carnea. Chrysoperla carnea had no significant impact on either aphid species population growth rate in mixed‐species treatments. Myzus persicae (ND) therefore experienced reduced predation in the presence of B. brassicae (CD) through a predator‐mediated indirect effect. Moreover, predator growth rates were significantly higher in the M. persicae‐only treatments than in either the B. brassicae‐only or mixed‐species treatments, suggesting predation was impaired in the presence of B. brassicae (CD). A trait‐mediated indirect interaction is proposed, consistent with associational resistance, in which the predator, upon incidental consumption of chemically‐defended aphids is deterred from feeding, releasing non‐defended aphids from predatory control.  相似文献   

12.
Summary Seasonal and diel activity patterns of mergansers, gulls, and terns along a river in northern Sweden were documented, as were those of their fish prey. The seasonal and diel activity patterns of goosandersMergus merganser and gulls (Larus canus, L. argentatus, andL. fuscus) were closely related to that of the river lampreyLampetra fluviatilis. During the peak spawning of the river lamprey, birds showed a nocturnal peak in fishing activity. During the summer solstice, birds were active for 24 h. The activity patterns of red-breasted merganserMergus serrator, ternsSterna spp., and three-spined sticklebacksGasterosteus aculeatus were also similar. Activity pattern of the prey apparently influenced breeding time, diel activity and foraging area of the twoMergus species. Social relations between gulls probably corrdinated their peak in fishing, which coincided with the time lampreys were most efficiently exploited.  相似文献   

13.
Several management strategies for ecosystems with biological interaction are discussed, including predator removal, predator-prey coexistence, prey exploitation, overexploitation, and introduction of sanctuaries. Some case studies related to ecosystem management are briefly presented; these describe Lakes Victoria and Tanganyika, discarding from shrimp trawl fisheries and the development in the North Sea that led to introduction of multispecies analysis. The concept of fishing down the food web is discussed and the average trophic levels at which the fisheries operate in different ecosystem types are estimated based on quantified trophic flow models. On a global level, while on average fisheries operate around two trophic levels above the primary producers, still one third of the catch of the 70 major fish species caught in the world is of piscivorous fish. Using exploitation-predation rate indices for different ecosystem types, the amount of finfish consumed globally by finfish is roughly estimated to be three times the catches of finfish. Finally some implications for the management of ecosystems are drawn up. It makes little difference if short-term prognoses are based on single-species or multispecies considerations. Multispecies models may, however, give the better long-term advice, and adaptive management may facilitate the move towards such long-term goals.  相似文献   

14.
This paper reports on an asymmetric indirect interaction between two chrysomelid beetles where one species (Galerucella tenella) experiences higher parasitization, and the other species (Galerucella calmariensis) lower parasitization, in mixed compared with monospecific populations. This pattern is likely to be a consequence of differences in life history characteristics, where the inferior species has a smaller body size, a lower fecundity and supports a lower parasitoid density than the superior species. This connection between life history characteristics and interspecific dominance in host–parasitoid systems corresponds to predictions from current community ecology theory, and provides a useful building-block in the development of a predictive theory of parasitoid effects on host coexistence.  相似文献   

15.
  1. Increased turbidity and siltation caused by rock quarrying, mining, and deforestation are pervasive disturbances in aquatic systems. Turbidity interferes with vision for aquatic organisms, potentially altering predator–prey interactions.
  2. We studied the effects of these disturbances in Trinidadian streams by surveying predators and their shared prey both in streams with versus without quarries as well as in a focal stream before and after the establishment of a quarry. Then, to evaluate whether differential foraging success in turbid water might underlie abundance patterns of predators, we experimentally induced turbidity in mesocosms and measured predator foraging success.
  3. Upstream quarry presence had a dramatic effect on the benthic structure of streams, greatly increasing siltation. A substantial decrease in the abundance of a diurnal cichlid predator (Crenicichla frenata) was associated with quarry presence, while a nocturnal erytherinid predator (Hoplias malabaricus) was equally as abundant in streams with or without quarries. The density of their shared prey, the Trinidadian guppy (Poecilia reticulata) remained unchanged.
  4. In mesocosm trials, Crenicichla were less successful predators with turbidity, whereas Hoplias performed equally across turbidities. These foraging success results help explain differences in demographic shifts in response to turbidity for both predators.
  5. By relating short-term effects of an anthropogenically altered visual environment on species interactions to abundance patterns of predators and prey, this study helps to identify an important mechanism whereby changes to species’ visual ecology may have long-term effects on population biology.
  相似文献   

16.
In cassava fields, two species of predatory mites, Typhlodromalus aripo and T. manihoti, co-occur at the plant level and feed on Mononychellus tanajoa , a herbivorous mite. The two predator species are spatially segregated within the plant: T. manihoti dwells on the middle leaves, while T. aripo occurs in the apices of the plant during the day and moves to the first leaves below the apex at night.
To monitor the prey densities experienced by the two predator species in their micro-environment, we assessed prey and predator populations in apices and on the leaves of cassava plants in the field. Prey densities peaked from November to January and reached the lowest levels in July. They were higher on leaves than in the apices. To test whether the life histories of the two predator species are tuned to the prey density they experience, we measured age-specific fecundity and survival of the two predators under three prey density regimes (1 prey female/72 h, 1 prey female/24 h and above the predators level of satiation). T. manihoti had a higher growth rate than T. aripo at high prey densities, mainly due to its higher fecundity. T. aripo had a higher growth rate at low prey density regimes, due to its late fecundity and survival. Thus, each of the two species perform better under the prey density that characterizes their micro-habitat within the plant.  相似文献   

17.
In natural communities, species are embedded in networks of direct and indirect interactions. Most studies on indirect interactions have focused on how they affect predator-prey or competitive relationships. However, it is equally likely that indirect interactions play an important structuring role in mutualistic relationships in a natural community. We demonstrate experimentally that on a small spatial scale, dense thickets of endemic Pandanus plants have a strong positive trait-mediated indirect effect on the reproduction of the declining endemic Mauritian plant Trochetia blackburniana. This effect is mediated by the endemic gecko Phelsuma cepediana moving between Pandanus thickets, a preferred microhabitat, and nearby T. blackburniana plants, where it feeds on nectar and pollinates the plants. Our findings emphasize the importance of considering plant-animal interactions such as pollination at relatively small spatial scales in both basic ecological studies and applied conservation management.  相似文献   

18.
19.
20.
Predators may utilize signals to exploit the sensory biases of their prey or their predators. The inclusion of conspicuous silk structures called decorations or stabilimenta in the webs of some orb‐web spiders (Araneae: Araneidae, Tetragnathidae, Uloboridae) appears to be an example of a sensory exploitation system. The function of these structures is controversial but they may signal to attract prey and/or deter predators. Here, we test these predictions, using a combination of field manipulations and laboratory experiments. In the field, decorations influenced the foraging success of adult female St. Andrew’s Cross spiders, Argiope keyserlingi: inclusion of decorations increased prey capture rates as the available prey also increased. In contrast, when decorations were removed, prey capture rates were low and unrelated to the amount of available prey. Laboratory choice experiments showed that significantly more flies (Chrysomya varipes; Diptera: Calliphoridae) were attracted to decorated webs. However, decorations also attracted predators (adult and juvenile praying mantids, Archimantis latistylus; Mantodea: Mantidae) to the web. St. Andrew’s Cross spiders apparently resolve the conflicting nature of a prey‐ and predator‐attracting signal by varying their decorating behaviour according to the risk of predation: spiders spun fewer decorations if their webs were located in dense vegetation where predators had greater access, than if the webs were located in sparse vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号