首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interrelation of heterotrophic bacteria with bacterivorous protists has been widely studied in pelagic environments, but data on benthic habitats, especially in freshwater systems, are still scarce. We present a seasonal study focusing on bacterivory by heterotrophic nanoflagellates (HNF) and ciliates in the silty sediment of a temperate macrophyte-dominated oxbow lake. From January 2001 to February 2002 we monitored the standing stock of bacteria and protozoa, bacterial secondary production (BSP, 3H-thymidine, and 14C-leucine incorporation), and grazing rates of HNF and ciliates on bacteria (FLB uptake) in the oxic sediment of the investigated system. BSP ranged from 470 to 4050 µg C L–1 wet sediment h–1. The bacterial compartment turned out to be highly dynamic, indicated by population doubling times (0.6–10.0 d), which were comparable to those in the water column of the investigated system. Yet, the control mechanisms acting upon the bacterial population led to a relative constancy of bacterial standing stock during a year. Ingestion rates of protozoan grazers were 0–20.0 bacteria HNF–1 h–1 and 0–97.6 bacteria ciliate–1 h–1. HNF and ciliates together cropped 0–14 (mean 4)% of BSP, indicating that they did not significantly contribute to benthic bacterial mortality during any period of the year. The low impact of protozoan grazing was due to the low numbers of HNF and ciliates in relation to bacteria (1.8–3.5 × 104 bacteria HNF–1, 0.9–3.1 × 106 bacteria ciliate–1). Thus, grazing by HNF and ciliates could be ruled out as a parameter regulating bacterial standing stock or production in the sediment of the investigated system, but the factors responsible for the limitation of benthic protistan densities and the fate of benthic BSP remained unclear.  相似文献   

2.
Temporal and spatial changes of viral and bacterial abundance were examined in relation to environmental factors and hydrography at five stations between May 2000 and July 2001 in the brackish lake of Ganzirri (Sicily, Italy). Virioplankton abundance ranged from 5.26 × 104 to 7.54 × 108VLP ml–1 (on average 1.38 × 108particles ml–1) and was significantly higher at the three eutrophic stations located in the lake of Ganzirri (Stations 1, 2, and 3) than in the channel connecting the lake with the Straits of Messina. The virus-to-bacterium abundance ratio (VBR range, 0.4–117; average:14) showed the highest values in channel connecting the lake of Ganzirri with the meromictic lake of Faro. VBR values <1.0 were found in summer 2000 in relation with peculiar hydrographic constraints. Virioplankton distribution was dependent on salinity, and on dilution of the oligotrophic waters flowing from the Straits. Virioplankton was closely related with bacterioplankton indicating a close coupling between viruses and host cell abundance.  相似文献   

3.
Potential rates of nitrification and denitrification were measured in an oligotrophic sediment system. Nitrification potential was estimated using the CO oxidation technique, and potential denitrification was measured by the acetylene blockage technique. The sediments demonstrated both nitrifying and denitrifying activity. Eh, O2, and organic C profiles showed two distinct types of sediment. One type was low in organic C, had high O2 and Eh, and had rates of denitrification 1,000 times lower than the other which had high organic C, low O2, and low Eh. Potential nitrification and denitrification rates were negatively correlated with Eh. This suggests that environmental heterogeneity in denitrifier and nitrifier populations in oligotrophic sediment systems may be assessed using Eh before sampling protocols for nitrification or denitrification rates are established. There was no correlation between denitrification and nitrification rates or between either of these processes and NH4 + or NO3 concentrations. The maximum rate of denitrification was 0.969 nmole N cm–3 hour–1, and the maximum rate of nitrification was 23.6 nmole cm–3 hour–1, suggesting nitrification does not limit denitrification in these oligotrophic sediments. Some sediment cores had mean concentrations of 6.0 mg O2/liter and still showed both nitrification and denitrification activity.  相似文献   

4.
We investigated how benthic nanoflagellate communities in marine sediments respond to sedimentation of organic material and to the presence of macrofaunal organisms in controlled boxcosms. An input of 24 g C m–2 resulted in a sharp increase in densities, from 93 to 477 × 103 flagellates cm–3 within 11 days. At the onset, this increase was paralleled by enhanced bacterial production and bacterial numbers. When bacterial production collapsed, flagellate ingestion rates, varying from 17 to 67 bact flag–1 h–1, were sufficient to control bacterial abundance. The presence of macrofauna accelerated the burst in flagellate densities. With macrofauna the same maximum densities were reached, but later densities dropped to relatively low levels. Macrofaunal bioturbation resulted in higher flagellate densities deeper in the sediment (up to 1200% at 3 cm and up to 460% at 6 cm deep). Correspondence to: R.P.M. Bak.  相似文献   

5.
Summary A test system was set up where the build-up of a biofilm on a defined surface could be studied in a carbon source limited chemostat.The attachment of P. putida ATCC 11172 to glass when growing on L-asparagine was studied at different dilution rates (specific growth rates) from 0.1 to 1.5 h–1 The number of attached colony forming units (cfu) increased with dilution rate from 1×106 cfu/cm2 at 0.1 h–1 to 4×107 cfu/cm2 at 1.0 h–1 and then the attachment decreased to about 6×106 cfu/cm2 at higher dilution rates (1.1–1.5 h–1). The number of attached cfu was measured after 24 h exposure. The value of the maximum specific growth rate in batch culture was 0.6 h–1.The total amount of attached cell-mass followed roughly the same pattern as the viable count.The viable count of the cells suspended in the growth medium showed its lowest value at the same dilution rate as resulted in maximum adhesion.It was shown that the effect of growth rate on the biofilm build-up of P. putida is significant, and ought to be borne in mind when continuous culture systems are set up and results evaluated.  相似文献   

6.
The interactions between viral abundance and bacterial density, biomass, and production were investigated along a longitudinal transect consisting of nine deep-sea stations encompassing the entire Mediterranean basin. The numbers of viruses were very low (range, 3.6 × 107 to 12.0 × 107 viruses g−1) and decreased eastward. The virus-to-bacterium ratio was always < 1.0, indicating that the deep-sea sediments of the Mediterranean Sea are the first example of a marine ecosystem not numerically dominated by viruses. The lowest virus numbers were found where the lowest bacterial metabolism and turnover rates and the largest cell size were observed, suggesting that bacterial doubling time might play an important role in benthic virus development.  相似文献   

7.
Despite the recognition that viruses are ubiquitous components of aquatic ecosystems, the number of studies on viral abundance and the ecological role of viruses in sediments is scarce. In this investigation, the interactions between viruses and bacteria were studied in the oxygenated silty sediment layer of a mesotrophic oxbow lake. A long-term study (13 months) and a diel study revealed that viruses are a numerically important and dynamic component of the microbial community. The abundance and decay rates ranged from 4.3 × 109 to 7.2 × 109 particles ml of wet sediment−1 and from undetectable to 22.2 × 107 particles ml−1 h−1, respectively, and on average the values were 2 orders of magnitude higher than the values for the overlying water. In contrast to our expectations, viruses did not contribute significantly to the bacterial mortality in the sediment, since on average only 6% (range, 0 to 25%) of the bacterial secondary production was controlled by viruses. The low impact of viruses on the bacterial community may be associated with the quantitatively low viral burden that benthic bacteria have to cope with compared to the viral burden with which bacterial assemblages in the water column are confronted. The virus-to-bacterium ratio of the sediment varied between 0.9 and 3.2, compared to a range of 5.0 to 12.4 obtained for the water column. We speculate that despite high numbers of potential hosts, the possibility of encountering a host cell is limited by the physical conditions in the sediment, which is therefore not a favorable environment for viral proliferation. Our data suggest that viruses do not play an important role in the processing and transfer of bacterial carbon in the oxygenated sediment layer of the environment investigated.  相似文献   

8.
We measured porewater profiles of inorganic (NH4 +, NO3 (+NO2 ), PO4 3– (hereafter referred to as DIP)) and organic (DON, DOP) nutrients in seagrass-vegetated sediments at two sites in a shallow bay in Bermuda within close proximity (200 m) but subject to different nutrient loading. At both sites, total dissolved and inorganic nutrient concentrations were usually 1–2 orders of magnitude higher in the sediments than in the water column, with the exception of NO3 . Organic N and P were significant components of the total dissolved nutrient pools both in the sediment porewater and in the overlying water column (up to 75% for DON and 40% for DOP), and may be important in meeting plant nutrient demands. We used two approaches to examine how well porewater nutrient concentrations reflected the relative availabilities of N and P for seagrasses: (1) a simple stoichiometric nutrient regeneration model based on the N:P ratio of decomposing organic matter and porewater NH4 + concentrations to predict porewater DIP, and (2) fitting of the porewater profiles to estimate rates of net nutrient production (or consumption), which reflects the balance between nutrient sources and sinks in the rhizosphere. The stoichiometric model indicated that sediment porewaters were depleted in P relative to N in the low-nutrient outer bay site, and enriched in P relative to N in the higher-nutrient inner bay site. These results are consistent with the mechanism of carbonate sediments in oligotrophic tropical environments being a strong sink for dissolved inorganic P and our previous work suggesting that nutrient enrichment causes P to become disproportionately more available than N. Net nutrient production rates of porewater P at both sites and N at the inner bay site were low (typically < 2%) relative to the nutrient demands of the seagrasses. The implications of the profile interpretation are two-fold: (1) the low rates of net nutrient production indicate diffusive losses from the root zone were insignificant and that nutrient turnover rates were high, except in the P-limited outer bay where N accumulated in sediment porewaters; and (2) because standing stock nutrient concentrations often represent a small fraction of the total nutrients cycled in the sediments, they are in many cases a poor indicator of nutrient availability. Based on our estimates of losses from the root zone, decomposition, and plant uptake we have constructed a rough budget for the cycling of P and N at our two sites.  相似文献   

9.
Methanogenesis was measured during the summer of 1994, in sediment coresand bulk samples from a Phragmites australis wetland in northern Jutland,Denmark. We compared sediment from healthy reed and dying-back reed, andan open lagoon resulting from die-back. Cores revealed variability withdepth and between sites, with the highest rates coinciding with layers oforganic gyttja, and negligible methane production from the underlying sandbase. Methanogenesis rates in the lagoon and die back sites were higher(up to 100–150 nmol h-1 g-1dry wt. sediment) than in the healthy reed (50–80 nmolh-1 g-1), with the highest rates being recordedfrom May to July. At these times, methanogenesis was markedly temperature-limited; samples incubated at 30 °C anon-limiting temperature, gave rates as high as 200–400nmol h-1 g-1 for the lagoon and die-backareas and 150 nmol h-1 g-1 for the healthyarea. Addition of 8 mM acetate and H2/CO2headspace suggested that both acetate-fermenting andCO2-reducing bacteria were present. Acetate additions suggested some co-limitation by substrate availability, with acetate limitation occurring in the healthy site during July and in the die-back site during August. Lower rates during August, especially in the healthy area, were associated with low water levels which resulted in more oxidized sediments. The data reveal highly variable methanogenesis in the sediment which, when considered with sediment depths, indicates that sites of Phragmites die-back have significantly greater rates of anaerobic mineralization than surrounding healthy wetland, and may be intense sources of methane.  相似文献   

10.
【背景】浮游病毒是水体微生物群落中重要的组成成分,深入研究浮游病毒的时空分布有助于更好地保护和开发当地的微生物资源。【目的】对采集到的纳帕海高原湿地水样中的浮游病毒和浮游细菌进行计数,揭示纳帕海高原湿地浮游病毒的分布规律。【方法】采用流式细胞仪检测2013年12月和2014年9月纳帕海高原湿地7个水样的浮游病毒与浮游细菌丰度,并对影响浮游病毒丰度的因素,如细菌丰度、叶绿素a含量以及其他环境因子进行了相关性分析。【结果】季节分布上,雨季浮游病毒和浮游细菌丰度高于旱季;水平分布上,原水样品的浮游病毒高于湿地水和淤泥水。旱季水样的浮游病毒丰度受到细菌丰度及叶绿素a浓度的影响较大;雨季水样的浮游病毒丰度受到水体的p H值和温度的影响较大。【结论】纳帕海高原湿地的浮游病毒和浮游细菌是比较活跃的。浮游病毒丰度在不同季节、不同采样点受到细菌丰度和叶绿素a浓度等因素的不同影响。在旱季噬菌体而非噬藻体或浮游植物病毒是纳帕海高原湿地中浮游病毒的优势种群。  相似文献   

11.
Antarctic lakes are extreme ecosystems with microbially dominated food webs, in which viruses may be important in controlling community dynamics. A year long investigation of two Antarctic saline lakes (Ace and Pendant Lakes) revealed high concentrations of virus like particles (VLP) (0.20–1.26 × 108 ml−1), high VLP: bacteria ratios (maximum 70.6) and a seasonal pattern of lysogeny differing from that seen at lower latitudes. Highest rates of lysogeny (up to 32% in Pendant Lake and 71% in Ace Lake) occurred in winter and spring, with low or no lysogeny in summer. Rates of virus production (range 0.176–0.823 × 106 viruses ml−1 h−1) were comparable to lower latitude freshwater lakes. In Ace Lake VLP did not correlate with bacterial cell concentration or bacterial production but correlated positively with primary production, while in Pendant Lake VLP abundance correlated positively with both bacterial cell numbers and bacterial production but not with primary production. In terms of virus and bacterial dynamics the two saline Antarctic lakes studied appear distinct from other aquatic ecosystems investigated so far, in having very high viral to bacterial ratios (VBR) and a very high occurrence of lysogeny in winter.  相似文献   

12.
Valdovinos  Claudio  Figueroa  Ricardo 《Hydrobiologia》2000,429(1-3):151-156
Oxygen uptake rates of undisturbed sediment columns have been used as an integrative measure of the metabolic activities of benthic communities. Since the intensity of metabolic processes of profundal lake is dependent on the production of organic matter in the pelagic zone, oxygen uptake rates reflect the trophic condition of the whole lake. Four small lakes of central Chile, differing strongly in trophic conditions, provided a possibility to compare benthic oxygen uptake rates, under different oxygen conditions (Quiñenco, Grande, Chica and Lleulleu). Our objective was to establish the relationship between the oxygen uptake rates and bottom characteristics of lakes with different trophic conditions. At 8 mg O2 l-1 in the overlying water of the cores studied, the oxygen uptake rates of the sediment were: Quiñenco 51.2–56.0 mg O2 m2 h-1 (eutrophic), Grande 41.2–46.4 mg O2 m2 h-1 (mesotrophic), Chica 23.2–18.1 mg O2 m2 h-1 (mesotrophic) and Lleulleu 11.7–16.0 mg O2 m2 h-1 (oligotrophic). By exposing the sediments to different oxygen levels in the laboratory, it was found that benthic community metabolism decreased with oxygen concentrations. The slope of regression lines, relating oxygen uptake rates to oxygen concentrations, differed for the different sites investigated, closely related with the trophic conditions of the lakes. It was positively correlated with the organic matter content of the sediment of the cores (r 2= 0.78, p<0,05) and the nutrients of the bottom waters (total-P: r 2= 0.73, p<0,05; total-N: r 2= 0.73, p<0,05), and negatively with the redox potential of the sediments (r 2= 0.88, p<0,05).  相似文献   

13.
Little is known of the factors shaping sediment bacterial communities, despite their high abundance and reports of high diversity. Two factors hypothesized to shape bacterial communities in the water column are nutrient (resource) availability and virus infection. The role these factors play in benthic bacterial diversity was assessed in oligotrophic carbonate–based sediments of Florida Bay (USA). Sediment–water mesocosm enclosures were made from 1-m diameter clear polycarbonate cylinders which were pushed into sediments to 201 cm sediment depth enclosing 80 L of water. Mesocosms were amended each day for 14 d with 10 µM NH 4 + and 1 µM PO 4 3– . In a second experiment, viruses from a benthic flocculent layer were concentrated and added back to flocculent layer samples which were collected near the mesocosm enclosures. Photosynthesis by microalgae in virus-amended incubations was monitored by pulse-amplitude modulated (PAM) fluorescence. In both experiments, bacterial diversity was estimated using automated rRNA intergenic spacer analysis (ARISA), a high-resolution fingerprinting approach. Initial sediment bacterial operational taxonomic unit (OTU) richness (236 ± 3) was higher than in the water column (148 ± 9), where an OTU was detectable when its amplified DNA represented >0.09% of the total amplified DNA. Effects on bacterial diversity and operational taxonomic unit (OTU) richness in nutrient-amended mesocosms may have been masked by the effects of containment, which stimulated OTU richness in the water column, but depressed OTU richness and diversity in sediments. Nutrient addition significantly elevated virus abundance and the ratio of viruses to bacteria (p < 0.05 for both) in the sediments, concomitant with elevated bacterial diversity. However, water column bacterial diversity (in unamended controls) was not affected by nutrient amendments, which may be due to rapid nutrient uptake by sediment organisms or adsorption of P to carbonate sediments. Addition of live viruses to benthic flocculent layer samples increased bacterial OTU diversity and richness compared with heat-killed controls; however, cluster analyses showed that the community structure in the virus-amended mesocosms varied greatly between replicates. Despite the strong effects upon eubacterial communities, photosynthesis of co-occurring protists and cyanobacteria was not significantly altered by the presence of virus concentrates. This study supports the hypothesis that nutrient availability plays a key role in shaping sediment bacterial communities, and also that viruses may regulate the abundance of the dominant competitors and allow less dominant organisms to maintain or increase their abundance in a community due to decreased competition for resources.  相似文献   

14.
The in situ rates of oxygen consumption by benthic nitrifiers were estimated at 11 study sites in 4 streams. Two methods were used: an in situ respiration chamber method and a method involving conversion of nitrifying potential measurements to in situ rates. Estimates of benthic nitrogenous oxygen consumption (BNOC) rate ranged from 0–380 mmol of O2 m–2·day–1, and BNOC contributed between 0–85% of the total benthic oxygen consumption rate. The activity of nitrifiers residing in the sediments was influenced by O2 availability, temperature, pH, and substrate. Depending upon site, nitrification could approximate either first-order or zero-order kinetics with respect to ammonium concentration. The source of ammonium for benthic nitrifiers could be either totally from within the sediment or totally from the overlying water. Nitrate produced in the sediments could flux to the water above or be lost within the sediment. The sediments could act as a source (positive flux) or sink (negative flux) for both ammonium (–185 mmol·m–2·day–1 to +195 mmol·m–2·day–1) and nitrate (–135 mmol·m–2·day–1 to +185 mmol·m–2·day–1).This study provides evidence to suggest that measurements of down-stream mass flow changes in inorganic nitrogen forms may give poor estimates of in situ rates of nitrification in flowing waters.  相似文献   

15.
Predation of attached Pseudomonas putida mt2 by the small ciliate Tetrahymena sp. was investigated with a percolated column system. Grazing rates were examined under static and dynamic conditions and were compared to grazing rates in batch systems containing suspended prey. The prey densities were 2 × 108 bacteria per ml of pore space and 2 × 108 bacteria per ml of suspension, respectively. Postingestion in situ hybridization of bacteria with fluorescent oligonucleotide probes was used to quantify ingestion. During 30 min, a grazing rate of 1,382 ± 1,029 bacteria individual−1 h−1 was obtained with suspended prey; this was twice the grazing rate observed with attached bacteria under static conditions. Continuous percolation at a flow rate of 73 cm h−1 further decreased the grazing rate to about 25% of the grazing rate observed with suspended prey. A considerable proportion of the protozoans fed on neither suspended bacteria nor attached bacteria. The transport of ciliates through the columns was monitored at the same time that predation was monitored. Less than 20% of the protozoans passed through the columns without being retained. Most of these organisms ingested no bacteria, whereas the retained protozoans grazed more efficiently. Retardation of ciliate transport was greater in columns containing attached bacteria than in bacterium-free columns. We propose that the correlation between grazing activity and retardation of transport is a consequence of the interaction between active predators and attached bacteria.  相似文献   

16.
We studied spatial variation in abundance of marine benthic and pelagic heterotrophic nanoflagellates in relation to abundances of autotrophic flagellates, bacteria and cyanobacteria in an upwelling area off the Banc d'Arguin, Mauritania.There was enormous spatial variation in densities. In the sediments these ranged from 8–219 × 103 cm–3 for heterotrophic flagellates. Maximum values are in the range of those for temperate shallow marine bottoms. Low densities (< 20 × 103) were confined to the deep stations (> 1000 m). Over the shelf (10–100 m depth) densities were high but related to grain size rather than to concurrent upwelling phenomena or to the abundance of benthic macrofauna.Pelagic flagellate abundance appeared to be more indicative of contemporary hydrographic conditions, most obvious by an increase in the ratio heterotrophic/autotrophic nanoflagellates away from the area of most intense upwelling.  相似文献   

17.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

18.
The effects of fluff deposit on benthic biota,NH4 + fluxes and nitrification was studied in thelaboratory using waterlogged and reflooded intertidal sediments fromMarennes-Oléron Bay, France. The fluff deposit was enriched inNH4 + compared to underlying sediments, and promotedchanges of the sediment pH, Eh, C:N ratio, C:chla ratio and the NH4 + efflux tooverlying water. Statistical analysis showed that pore waterNH4 + concentrations were strongly influenced byinteractions between fluff, drying, depth and bioturbation. The fluff depositresulted in anoxia in the top sediments and moved the nitrification zone tosurface layers in fluff. However, the NH4 + enrichment influff did not significantly change actual nitrification rates (range 0–1mmol m–2 d–1) or potentialnitrification rates (range 3–11 mmolNO3 m–2d–1).  相似文献   

19.
Newrkla  P.  Gunatilaka  A. 《Hydrobiologia》1982,91(1):531-536
Benthic community respiration rates of profundal sediments of Fuschlsee (37.6 mg · O2 · m–2 · h–1 — eutrophic), Mondsee (40.19 mg · O2 · m–2 · h–1 — eutrophic) and Attersee (11.5 mg · O2 · m–2 · h–1 — oligo-mesotrophic) were measuredin situ, and in cores. By exposing the sediments to different oxygen levels in the laboratory it was found that benthic community metabolism reduced with decreasing oxygen concentrations. The slope of the regression lines, relating oxygen uptake rates to oxygen concentrations, differed significantly for the different sites investigated. These results were closely related to the trophic conditions of the lakes.  相似文献   

20.
Direct measurements of net production rates and pore water profiles of solutes in the fine-grained sediments of Saginaw Bay, imply corresponding steady-state fluxes to the overlying water of 1.1–1.3 (I), 450–1010 (NH4 +), 1250–2650 (Si(OH)4), 3000–3400 (Ca2+), 440–1330 (Mg2+), 1.5–728 (Fe2+), and 179–281 (Mn2+) moles/m2/day and 11.0–11.8 (alkalinity) meq/m2/day at 17.5 °C. Silica production rates in sediments apparently follow first order kinetics with a rate coefficient of 0.09/day and a steady-state silica concentration of 1.2 mM at 23.5°C. The remaining solutes follow kinetics approximately independent of solute concentration over the range of concentrations observed. Measured solute production rates are consistent with observed solute profiles only if lateral diffusion gradients are maintained in the sediments by the burrowing and irrigation activity of benthic organisms such asChironomous, the dominant burrower in Saginaw Bay. Assuming that solute fluxes from Saginaw Bay are representative of all of the post-glacial sediments of Lake Huron, the iodine flux from sediments is comparable to the total fluvial input of iodine. The extrapolated silica fluxes from Lake Huron sediments balance the estimated biogenic silica flux to the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号