首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89–500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids.  相似文献   

2.
A novel competitive immunosensor was developed as a model system using anti-human serum albumin (HSA)-conjugated gold nanoparticles (AuNPs) as an electrochemical label and mobile crystalline material-41 (MCM-41)–polyvinyl alcohol (PVA) mesoporous nanocomposite as an immobilization platform. However, no attempt has yet been made to use the MCM-41 as the supporting electrolyte for the electrosynthesis of nonconducting polymer nanocomposite. This hybrid membrane was evaluated extensively by using field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) to determine its physicochemical and electrochemical properties in immunosensor application. FESEM revealed an appropriate and stable attachment between HSA and MCM-41 and also a dense layer deposition of MCM-41–HSA–PVA film onto the electrode surfaces. DPV was developed for quantitative determination of antigen in biological samples. A decrease in DPV responses was observed with increasing concentrations of HSA in standard and real samples. In optimal conditions, this immunosensor based on MCM-41–PVA nanocomposite film could detect HSA in a high linear range (0.5–200 μg ml?1) with a low detection limit of 1 ng ml?1. The proposed method showed acceptable reproducibility, stability, and reliability and could also be applied to detect the other antigens.  相似文献   

3.
In the present study, a sensitive and competitive chemiluminescence immunoassay (CLIA) was developed in order to detect human serum albumin (HSA) in urine specimen. The method utilizes a home-made monoclonal anti-albumin antibody conjugated to horseradish peroxidase enzyme (mAb-HRP). Sensitivity, specificity and linearity of the assay were evaluated. According to the results, the proper concentration of HSA and mAb-HRP conjugates was 800?ng/100?μl and 1:200 respectively. In optimal conditions, this method could detect HSA in a high linear range of 10–200?μg?ml?1 with the low detection limit of 0.025?μg?ml?1. No evidence of interference with presence of probable substances in the urine samples indicated its high specificity and selectivity. Moreover, high reproducibility as well as high sensitivity and specificity of the test were confirmed using diabetic and non-diabetic samples. Significant concordance was observed between CLIA and immunoturbidimetry assay regarding detection of HSA. The results of the present study can be considered in accordance with the current demands such as reliability, accuracy, convenience and high speed of performance for a precise protein detection method. Furthermore, it may be regarded as a more rapid, simpler and cheaper alternative compared to other sophisticated assays.  相似文献   

4.
An amperometric immunosensor was fabricated for the detection of osteoproteogerin (OPG) by covalently immobilizing a monoclonal OPG antibody (anti-OPG) onto the gold nanoparticles (AuNPs) deposited functionalized conducting polymer (5,2′:5′,2″-terthiophene-3′-carboxylic acid). AuNPs were electrochemically deposited onto the conducting polymer using cyclic voltammetry. The particle size of deposited AuNPs was controlled by varying the scan rate and was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The immobilization of anti-OPG was also confirmed using XPS. The principle of immunosensor was based on a competitive immunoassay between free-OPG and labeled-OPG for the active sites of anti-OPG. HRP was used as a label that electrochemically catalyzes the H2O2 reduction. The catalytic reduction was monitored amperometrically at −0.4 V vs. Ag/AgCl. The immunosensor showed a linear range between 2.5 and 25 pg/ml and the detection limit was determined to be 2 pg/ml. The proposed immunosensor was successfully applied for real human samples to detect OPG.  相似文献   

5.
In this study, a colorimetric method was exploited to detect bisphenol A (BPA) based on BPA-specific aptamer and cationic polymer-induced aggregation of gold nanoparticles (AuNPs). The principle of this assay is very classical. The aggregation of AuNPs was induced by the concentration of cationic polymer, which is controlled by specific recognition of aptamer with BPA and the reaction of aptamer and cationic polymer forming “duplex” structure. This method enables colorimetric detection of BPA with selectivity and a detection limit of 1.50 nM. In addition, this colorimetric method was successfully used to determine spiked BPA in tap water and river water samples.  相似文献   

6.
Adducts of benzo[a]pyrene-diolepoxide (BPDE) with blood nucleophiles have been used as biomarkers of exposure to polycyclic aromatic hydrocarbons (PAHs). The most popular such assay is a competitive enzyme-linked immunosorbent assay (ELISA) that employs monoclonal antibody 8E11 to detect benzo[a]pyrene tetrols following hydrolysis of BPDE adducts from lymphocyte DNA or human serum albumin (HSA). Here we used 8E11 as the capture antibody in a sandwich ELISA to detect BPDE-HSA adducts directly in 1-mg samples of HSA or 20 μl of serum/plasma. The assay employs an anti-HSA antibody for detection, and this is amplified by an avidin/biotinylated horseradish peroxidase complex. The sandwich ELISA has advantages of specificity and simplicity and is approximately 10 times more sensitive than the competitive ELISA. To validate the assay, HSA samples were assayed from three populations with known high PAH exposures (coke oven workers), medium PAH exposures (steel factory control workers), and low PAH exposures (volunteer subjects) (n = 30). The respective geometric mean levels of BPDE-HSA adducts—67.8, 14.7, and 1.93 ng/mg HSA (1010, 220, and 28.9 fmol BPDE equiv/mg HSA)—were significantly different (P < 0.05). The sandwich ELISA will be useful for screening PAH exposures in large epidemiologic studies and can be extended to other adducts for which capture antibodies are available.  相似文献   

7.
Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. It is also an active component in traditional Chinese medicines which are used to treat various diseases. In this study, fluorescence spectroscopy in combination with UV–Vis absorption spectroscopy was employed to investigate the specific binding of CGA to human serum albumin (HSA) under the physiological conditions. In the mechanism discussion, it was proved that the fluorescence quenching of HSA by CGA is a result of the formation of CGA–HSA complex. Binding parameters calculating from Stern–Volmer method and Scatchard method showed that CGA bind to HSA with the binding affinities of the order 104 l mol−1. The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for CGA–HSA association. Site marker competitive displacement experiments demonstrated that CGA specific bind to site I (subdomain IIA) of HSA. The binding distance r (3.10 nm) between donor (Trp-214) and acceptor (CGA) was obtained according to fluorescence resonance energy transfer. Furthermore, the effect of metal ions on CGA–HSA system was studied.  相似文献   

8.
The bimetallic core–shell nanoparticles show unique plasmonic properties and their preparations and characterizations are currently under investigation. A new type of Au core–Ag shell (Au@Ag) nanoparticles is prepared by sandwiching the chemically attached Raman reporter molecules (RRMs) and a 12-base-long oligonucleotide between the 13 nm average size core-gold nanoparticles (AuNPs) and 9 nm and 21 nm average size of Ag shell. The synthesized Au@Ag nanoparticles are tested for their surface-enhanced Raman scattering (SERS) performance. It is found that the chemical attachment of the oligonucleotides along with the RRM improved the enhancement in Raman scattering more than one order of the magnitude with the Au@Ag nanoparticles with an average 9-nm shell thickness while the Au@Ag nanoparticles with 21 nm average shell thickness have poor SERS activity. A minimum enhancement factor of 1.0 × 107 is estimated for the SERS active oligonucleotide-mediated Au@Ag nanoparticles. The approach may provide new routes for preparation of highly sensitive new generation of bimetallic core–shell nanoparticles.  相似文献   

9.
In this paper, we proposed a new method for the determination of either human serum albumin (HSA) or 5-Aminosalicylic acid (5-ASA) by synchronous fluorescence spectra and examined the interaction between them using the molecular modeling method under simulative physiological conditions. The optimum conditions of synchronous fluorometric determination of HSA were investigated and the method was successfully applied to the determination of 5-ASA added to serum, urine, and saliva samples. The linear range of the determination of HSA and 5-ASA were 1.60 – 414 μg mL−1 and 0.76 –22.95 μg mL−1, the detection limits were 0.552 μg mL−1 and 0.38 μg mL−1, respectively. In addition, the effect of various common ions on the determination of HSA with 5-ASA was also discussed at room temperature. Figure The salicylic acid moiety is located within the binding pocket. The ring of 5-ASA was inserted in the hydrophobic cavity of site I, and it is important to note that the residue ARG-218 and the trptophan residue of HSA (Trp214) are in close proximity to the ring of 5-ASA suggesting the existence of hydrophobic interaction between them.  相似文献   

10.
A test system is described and expanded upon for mass field immunochromatography assay on porous membrane carriers for rapid diagnostics of potato virus X (PVX) in potato leaf tissue and sprout extracts using colloidal gold nanoparticles as a marker. Sensitivity of the assay developed for PVX identification is found to be comparable to the sensitivity of solid-phase sandwich-ELISA. Complete assay time does not exceed 15 min, and the lower limit of the PVX detection in non-clarified leaf extract is 2 ng/ml. A single measurement requires 0.1–0.2 ml (3–5 drops) of tested solution only (extracted from 10–20 mg of potato leaf tissue or sprouts). The simplicity and reliability of the method makes it especially efficient in direct rapid monitoring of many infected potato specimens in the field, as verified by field trials of 360 clones of 28 domestic and foreign cultivars of potato. A diagnostic kit for routine analyses of potato viral infections both in the laboratory and in the field is described and expanded upon.  相似文献   

11.
In this study, we present in vitro cytotoxicity of iron oxide (Fe3O4) and manganese oxide (MnO) using live/dead cell assay, lactate dehydrogenase assay, and reactive oxygen species detection with variation of the concentration of nanoparticles (5–500 μg/ml), incubation time (18–96 h), and different human cell lines (lung adenocarcinoma, breast cancer cells, and glioblastoma cells). The surface of nanoparticles is modified with polyethyleneglycol-derivatized phospholipid to enhance the biocompatibility, water-solubility, and stability under an aqueous media. While the cytotoxic effect was negligible for 18 h incubation even at highest concentration of 500 μg/ml, MnO nanoparticle represented higher level of toxicity than those of Fe3O4 and the commercial medical contrast reagent, Feridex after 2 and 4 day incubation time. However, the cytotoxicity of Fe3O4 is equivalent or better than Feridex based on the live/dead cell viability assay. The engineered MnO and Fe3O4 exhibited excellent stability compared with Feridex for a prolonged incubation time.  相似文献   

12.
Small interfering RNA (siRNA) molecules have great potential for developing into a future therapy for breast cancer. To overcome the issues related to rapid degradation and low transfection of naked siRNA, polyethylenimine (PEI)-coated human serum albumin (HSA) nanoparticles have been characterized and studied here for efficient siRNA delivery to the MCF-7 breast cancer cell line. The optimized nanoparticles were ~90 nm in size, carrying a surface charge of +26 mV and a polydispersity index (PDI) less than 0.25. The shape and morphology of the particles was studied using electron microscopy. A cytotoxicity assessment of the nanoparticles showed no correlation of cytotoxicity with HSA concentration, while using high molecular weight PEI (MW of 70 against 25 kDa) showed higher cytotoxicity. The optimal transfection achieved of fluorescin-tagged siRNA loaded into PEI-coated HSA nanoparticles was 61.66 ± 6.8%, prepared with 6.25 μg of PEI (25 kDa) added per mg of HSA and 20 mg/ml HSA, indicating that this nonviral vector may serve as a promising gene delivery system.  相似文献   

13.
With increasing concerns of estrogenic effects of endocrine disrupting compounds, the development of simple detection assay for these compounds is an ongoing need. Herein, a simple, rapid, and highly sensitive assay for estradiol (E2) detection was developed using the ligand binding domain of estrogen receptor α (LBD-ERα), the receptor interacting domain of steroid receptor co-activator 1 (RID-SRC1), and gold nanoparticles (AuNPs). The colloidal AuNPs could be stabilized against a salt-induced aggregation by adding LBD-ERα protein. However, with the presence of E2, the specific binding of LBD-ERα protein and E2 led to a salt-induced aggregation of AuNPs as seeing from a color change from red to blue. This developed assay exhibited a high sensitivity for E2 detection with the limit of detection (LOD) of 2.62 × 10−14 M. When the RID-SRC1 protein was included, the detection sensitivity was increased, which the LOD for E2 was at 1.20 × 10−15 M. This assay was specific for a detection of E2 but not progesterone, the negative control ligand. Results of this work clearly showed the efficiency of developed assay for E2 detection, which possibly further developed for an onsite monitoring of E2.  相似文献   

14.
We report a novel micro-potentiometric hemoglobin (Hb) immunosensor based on electrochemically synthesized polypyrrole (PPy)–gold nanoparticles (AuNPs) composite. PPy–AuNPs film with AuNPs uniformly distributed in it was deposited on gold electrode surface by a simple and direct procedure, without the addition of any nanoparticles or reducing agent. And this generic method makes it possible to deposite different polymers on miniaturized electrodes. With the existence of AuNPs, the antibody immobilization onto the electrode surface was facilitated. Morphology study by field emission scanning electron microscope (FE-SEM) confirms the presence of AuNPs in PPy. Based on an ion-sensitive field-effect transistors (ISFETs) integrated chip, a micro-potentiometric immunosensor for Hb and hemoglobin-A1c (HbA1c) has been constructed. The sensor response was linear over the concentration range 60–180 μg/ml Hb and 4–18 μg/ml HbA1c. The Hb concentration in whole blood samples has also been analysed, with a linear dose–response behavior between 125 and 197 μg/ml and a sensitivity of 0.20 mV μg−1 ml. The measuring ranges of the developed Hb and HbA1c immunosensors meet the clinical demand for measuring the HbA1c/Hb ratio of 5–20%. This sensor results in simple and rapid differential measurement of Hb and HbA1c, and has great potential to become an inexpensive and portable device for monitoring of diabetes.  相似文献   

15.
An amperometric immunosensor in the competitive format was developed for the detection of methamphetamine in urine. The electrodes consisted of carbon paste and Ag/AgCl screen printed on heat sealing film, respectively, and of monoclonal anti-methamphetamine antibody as the biorecognition element. Optimum amounts of methamphetamine- N -bovine serum albumin conjugate, monoclonal antibody and alkaline phosphatase-goat anti-mouse immunoglobulin G were 20, 10 ng and 1:10,000 dilution in 10 &#119 l each, respectively. Methamphetamine was detected by the conversion of p -aminophenyl phosphate to electroactive p -aminophenol in the range of 200 ng/ml (lower detection limit) to 1,500 ng/ml methamphetamine in a nearly linear dose response curve. Within amphetamine concentrations of 0-1,500 ng/ml cross-reaction with methamphetamine was not observed. Working with urine samples spiked with methamphetamine, the accuracy and precision of the assay were 91.5-104.4% and 15.8-24.4%, respectively. This is a proof of concept in the clinical perspective for an amperometric immunosensor whose electrodes are amenable to future mass production.  相似文献   

16.
A competitive binding inhibition enzyme linked immunosorbent assay (ELISA) was used to detect Blastomyces dermatitidis antigens in urine specimens from dogs with blastomycosis. Sera from rabbits immunized with B. dermatitidis killed whole yeast cells were used as the primary antibody in the competitive ELISA. This initial study was performed to determine if B. dermatitidis antigen detection was possible and to test the efficacy of the rabbit sera as a primary antibody. An indirect ELISA was also performed to compare antigen detection in urine to antibody detection in the sera of the infected dogs. The results indicate 100% (36/36 specimens) detection of both antigen and antibody. Cross reactivity with Histoplasma capsulatum, as well as non-specific binding with the normal urine specimens, was observed with the competitive binding inhibition ELISA.  相似文献   

17.
The development of an eco-friendly and reliable process for the synthesis of gold nanomaterials (AuNPs) using microorganisms is gaining importance in the field of nanotechnology. In the present study, AuNPs have been synthesized by bio-reduction of chloroauric acid (HAuCl4) using the fungal culture filtrate (FCF) of Alternaria alternata. The synthesis of the AuNPs was monitored by UV–visible spectroscopy. The particles thereby obtained were characterized by UV, dynamic light scattering (DLS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). Energy-dispersive X-ray study revealed the presence of gold in the nanoparticles. Fourier transform infrared spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. Treatment of the fungal culture filtrate with aqueous Au+ ions produced AuNPs with an average particle size of 12 ± 5 nm. This proposed mechanistic principal might serve as a set of design rule for the synthesis of nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

18.
In this work, fluorescence spectroscopy in combination with circular dichroism spectroscopy and molecular modeling was employed to investigate the binding of 10-hydroxycamptothecin (HCPT) to human serum albumin (HSA) under simulative physiological conditions. The experiment results showed that the fluorescence quenching of HSA by HCPT was a result of the formation of HCPT–HSA complex. The corresponding association constants (K a) between HCPT and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The results of thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bonds and van der Waals forces played major roles for HCPT–HSA association. Site marker competitive displacement experiment indicated that the binding of HCPT to HSA primarily took place in sub-domain IIA (site I). Molecular docking study further confirmed the binding mode and the binding site obtained by fluorescence and site marker competitive experiments. The conformational investigation showed that the presence of HCPT decreased the α-helical content of HSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of HSA molecules.  相似文献   

19.
Detecting labels based on water dispersions of colloidal textile dyes were developed that are useful in various analytical and diagnostic test systems for a simple visual assessment of the assay. Colored water-insoluble particles of dyes were used for the sorptional immobilization of streptavidin on their surface. The resulting streptavidin-dye (STR-DYE) complexes possessed a high visualizing capacity and were used for the combined detection of pesticides (simazine and 2,4-dichlorophenoxyacetic acid) by noninstrumental immunoassay (DYE-comb-assay, competitive dot-immunoassay in the comb format). The detection limits and the duration of our DYE-comb-assay (4 ng/ml, 20–25 min), HRP-comb-assay (competitive dot-immunoassay in the comb format using the enzymic conjugate of STR with horseradish peroxidase) (16 ng/ml), and the traditional competitive ELISA (12–16 ng/ml, 1.5 h) were compared. This DYE-comb-assay is simple enough and can be used under field conditions.  相似文献   

20.
In the present study, an electrochemical aptasensor for highly sensitive detection of thrombin was developed based on bio-barcode amplification assay. For this proposed aptasensor, capture DNA aptamerI was immobilized on the Au electrode. The functional Au nanoparticles (DNA–AuNPs) are loaded with barcode binding DNA and aptamerII. Through the specific recognition for thrombin, a sandwich format of Au/aptamerI/thrombin/DNA–AuNPs was fabricated. After hybridization with the PbSNPs-labeled barcode DNA, the assembled sensor was obtained. The concentration of thrombin was monitored based on the concentration of lead ions dissolved through differential pulse anodic stripping voltammetric (DPASV). Under optimum conditions, a detection limit of 6.2 × 10−15 mol L−1 (M) thrombin was achieved. In addition, the sensor exhibited excellent selectivity against other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号