首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T. Chang  J. Xia  L. Xu  X. Wang  B. Zhu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2018,49(4):312-316
A genome‐wide association study (GWAS) was conducted for two carcass traits in Chinese Simmental beef cattle. The experimental population consisted of 1301 individuals genotyped with the Illumina BovineHD SNP BeadChip (770K). After quality control, 671 990 SNPs and 1217 individuals were retained for the GWAS. The phenotypic traits included carcass weight and bone weight, which were measured after the cattle were slaughtered at 16 to 18 months of age. Three statistical models—a fixed polygene model, a random polygene model and a composite interval mapping polygene model—were used for the GWAS. The genome‐wide significance threshold after Bonferroni correction was 7.44E‐08 (= 0.05/671 990). In this study, we detected eight and seven SNPs significantly associated with carcass weight and bone weight respectively. In total, 11 candidate genes were identified within or close to these significant SNPs. Of these, we found several novel candidate genes, including PBX1, GCNT4, ALDH1A2, LCORL and WDFY3, to be associated with carcass weight and bone weight in Chinese Simmental beef cattle, and their functional roles need to be verified in further studies.  相似文献   

2.
This study was designed to investigate the candidate single nucleotide polymorphisms (SNPs) in the exon’s region of bovine diacylglycerol O-acyltransferase (DGAT1) gene using bioinformatics and experimental methods. A total of 17 SNPs were screened from public data resources and DNA sequencing. Three SNPs (c.572A>G, c.1241C>T and c.1416T>G) of these candidate SNPs were genotyped by created restriction site-polymerase chain reaction (CRS-PCR) methods. The gene-specific SNP markers and their effects on meat and carcass fatness quality traits were evaluated in Chinese commercial cattle. The c.572A>G and c.1416T>G significantly effected on backfat thickness, longissimus muscle area, marbling score, fat color and Warner-Bratzler shear force. No significant association was detected between the c.1241C>T and measured traits. Results from this study suggested that the SNP markers may be effective for the marker-assisted selection of meat and carcass fatness quality traits, and added new evidence that DGAT1 gene is an important candidate gene for the improvement of meat and carcass fatness quality in beef cattle industry.  相似文献   

3.
Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of conjugated linoleic acid (CLA) and mono-unsaturated fatty acids (MUFA) from their saturated counterparts in the mammary gland and adipose tissue of ruminant animals. We hypothesize that single nucleotide polymorphisms (SNPs) in the SCD gene account for some of the differences in SCD activity, and consequently for some of the variations in CLA and MUFA content of milk fat between Holsteins and Jersey cows and within these two breeds. We analyzed the open reading frame of the SCD gene of 44 Holsteins and 48 Jerseys for SNPs by sequencing. Three SNPs: 702A --> G, 762T --> C and 878C --> T were identified in both breeds and a further SNP, 435G --> A, was unique to Holsteins. The SNPs characterized four different genetic variants in Holsteins: A (G(435)A(702)T(762)C(878)), A1 (A(435)A(702)T(762)C(878)), B (G(435)G(702)C(762)T(878)) and B1 (A(435)G(702)C(762)T(878)), with only variants A and B in Jerseys. SNP 878C --> T resulted in a non-synonymous codon change while the rest resulted in synonymous codon changes giving rise to two protein variants, A having alanine and B having valine. Allele A was the most prevalent in the two breeds. These differences may, therefore, contribute to existing variations in CLA and fat content between and within Canadian Holstein and Jersey cows.  相似文献   

4.
With the proposed global climate change, heat tolerance is becoming increasingly important to the sustainability of livestock production systems. Results from previous studies showed that variants in the prolactin releasing hormone (PRLH) (AC_000160.1:g.11764610G>A) and superoxide dismutase 1 (SOD1) (AC_000158.1:g.3116044T>A) genes play an important role in heat tolerance in African indicine cattle. However, it is unknown whether or not the mutations are associated with heat tolerance in Chinese cattle. In this study, PCR and DNA sequencing were used to genotype two missense mutations in 725 individuals of 30 cattle breeds. Analysis results demonstrated that two classes of base substitution were detected at two loci: AC_000160.1:g.11764610G>A and AC_000158.1:g.3116044T>A or T>C respectively, with amino acid substitutions arginine to histidine and phenylalanine to isoleucine or leucine. The frequencies of the G and T alleles of the two loci gradually diminished from northern groups to southern groups of native Chinese cattle, whereas the frequencies of A and A or C alleles showed a contrary pattern, displaying a significant geographical difference across native Chinese cattle breeds. Additionally, analysis of these two loci in Chinese indigenous cattle revealed that two SNPs were significantly associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (< 0.01), suggesting that cattle with A or C alleles were distributed in regions with higher T, RH and THI. Our results suggest that the two mutations of PRLH and SOD1 genes in Chinese cattle were associated with the heat tolerance.  相似文献   

5.
Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine TLR4 was taken as a candidate gene for mastitis resistance. This study aimed to analyze the associations of single nucleotide polymorphisms (SNP) or haplotype and somatic cell score (SCS) in 404 Chinese commercial dairy cattle including Chinese Holstein, Sanhe cattle and Chinese Simmental breeds. The polymerase chain reaction and sequencing methods were used for detecting genotype and allele frequency distribution of the two SNPs (rs8193062, rs8193064), statistical results showed that T allele at rs8193062 and C allele at rs8193064 were the predominate alleles. Moreover, six SNPs, including two SNPs (rs8193062, rs8193064) and four SNPs (rs8193060, rs8193069, rs29017188, rs8193046) which were chosen according the polymorphism level for the same cattle populations in previous studies, were used for haplotype analysis, the results revealed that twenty-one haplotypes were found in the mentioned animals, of which, Hap1 (30.5 %) and Hap2 (30.4 %) were the most common haplotypes. Hap2, Hap4 and Hap12 might negatively effect on milk SCS, whereas Hap13 might positively effect on milk SCS. The results in this study might assist in marker assisted selection and provided some reference to be implemented in breeding programs to improve the mastitis resistance of dairy cattle.  相似文献   

6.
Feeding greatly affects milk yield and composition. The research is highlighting the potential of genetic polymorphism at some loci to affect milk yield and quality traits. These loci can be up/down regulated depending on the production environment; therefore, we hypothesized that milk yield and composition could differ when cows with different genotype at SCD, DGAT1 and ABCG2 loci are reared in different feeding systems. The polymorphisms of SCD, DGAT1 and ABCG2 genes were investigated in Modicana breed. In all, three polymorphic sites, responsible for the genetic variation of quantitative trait loci and therefore defined quantitative trait nucleotides, were genotyped: the transition g.10329C>T in 5th exon determines a substitution p.A293V in the SCD, the dinucleotide mutation g.10433-10434AA>GC in 8th exon responsible for p.K232A substitution in the DGAT1 and the transition g.62569A>C in the 14th exon responsible for p.Y581S substitution in the ABCG2 gene. In the sample of 165 Modicana cows, SCD and DGAT1 genes resulted polymorphic; the alleles g.10329T and g.10433-10434GC were the most frequent in SCD and DGAT1 (0.73 and 0.91) respectively, whereas ABCG2 locus was monomorphic for allele A (p.581Y). Sequencing analysis was carried out on 14 samples with different genotypes to confirm the results of the PCR-RFLP protocols. Based on the genotypes at SCD locus, 47 Modicana cows were selected for the nutritional trial: 24 cows in a semi-intensive farm, with 2 h/day grazing on natural pasture, and 23 cows in an extensive farm, with 8 h/day grazing on natural pasture. Monthly, milk yield and composition were evaluated and individual milk samples were analyzed for fatty acids composition by gas chromatography. No differences in milk yield, fat, protein, lactose, casein and urea were associated to SCD genotype. Feeding systems affected milk yield and composition. No significant genotype×feeding system interaction was observed for milk yield and composition. Fatty acids composition was significantly affected only by the feeding system. Significant interactions were found between SCD genotype and feeding system for six fatty acids: 4:0, 6:0, 8:0, 10:0, 12:0 and t11 18:1. We concluded that the feeding system was the factor that mostly affected milk production and composition; moreover, our results do not confirm what reported in literature as regard the effect of the SCD polymorphism on milk fatty acid composition. The high amount of pasture seemed to have resized the SCD polymorphism effects because of the different fatty acids composition of the diet.  相似文献   

7.
Hormone-sensitive lipase (HSL) is responsible for the decomposition of triglycerides in adipose tissue to release free fatty acids, and it is a key rate-limiting enzyme in the regulation of adipose tissue deposition and decomposition. The objective of this study was to evaluate the association between novel SNPs in the coding region of bovine HSL gene and carcass and meat quality traits of Chinese Simmental-cross steers. Two novel SNPs were genotyped and the 47 traits of carcass and meat quality traits were measured in the population studied. Statistical analysis revealed that the SNPs of HSL gene were associated with the carcass and meat quality traits. The individuals with TT genotypes of E1-276C>T showed significant higher dressing percentage, net meat rate, hind legs circumference, fat coverage rate, mesenteric fat and kidney fat (p < 0.05). E8-51C>T (P17S) also showed a significant association with the pH of beef and fatty acids content in Chinese Simmental cattle (p < 0.01). Our findings indicated that polymorphisms in HSL might be one of important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production.  相似文献   

8.
Lv Y  Wei C  Zhang L  Lu G  Liu K  Du L 《Animal biotechnology》2011,22(1):1-6
We assessed SLC27A1, a candidate gene for milk production traits in Chinese Holstein cattle. DNA was extracted from the blood of 48 top Chinese Holstein Cattle selected according to phenotypic character and mixed into DNA pool for SNP detection. We tested blood samples of these cattle for SNPs in exon 3 and the 3'-flanking region of the SLC27A1 gene by using polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) and DNA sequencing. We found 2 polymorphic sites: 112T>C, a synonymous mutation, in exon 3 (SNP(1)), and 64G>A in the 3'-UTR (SNP(2)). We also determined the genotypes of 330 Chinese Holstein cattle by using PCR-restriction fragment length polymorphism (RFLP). We found 3 genotypes each at SNP(1) (TT, TC, and CC) and SNP(2) (GG, GA, and AA). The association among the different genotypes at these 2 sites and milk production traits was analyzed using a least-squares procedure. The results showed that cows with genotype CC had higher milk yields than those with genotype TC (0.01 < p < 0.05). No significant difference was detected among the 3 SNP(2) genotypes in terms of milk production traits. Our results provide evidence that the C allele have potential effects on milk yield trait.  相似文献   

9.
An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR‐RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny‐tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker‐assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.  相似文献   

10.
The objective of this study was to examine the association of transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) genes polymorphisms with growth traits in three Chinese cattle breeds (Jiaxian red cattle, Qinchuan cattle and Luxi cattle). Through experiments we identified three single nucleotide polymorphisms (SNPs) in these three cattle breeds TRPV1 and TRPA1 genes using PCR-SSCP, (forced) PCR-RFLP methods. Three of these polymorphisms are all synonymous mutation which includes (NW_003104493.1: 30327 C?>?T), (NW_003104493.1: 33394 A?>?G) and (NW_003104493.1: 38471?G?>?A) are in exons. The other three polymorphisms are located at 3'UTR. Furthermore, we evaluated the haplotype frequency and the statistical analyses indicated that these SNPs of TRPV1 and TRPA1 genes were associated with bovine body height, body length, waist angle width, hucklebone width, cross ministry height, chest qingwidth (p?<?0.05) and recommendation height, cannon circumference (p?<?0.01) of Qingchuan cattle; body length, waist angle width (p?<?0.05) of Jiaxian red cattle; body weight, Body length, cannon circumference, chest circumference (p?<?0.05) and body height (p?<?0.01) of Luxi cattle. Our result confirms the polymorphisms in the TRPV1 and TRPA1 genes are associated with growth traits that may be used for marker-assisted selection (MAS) in three beef breeds programs.  相似文献   

11.
cattle (1/2 Brahman, 1/4 Murray Grey and 1/4 Yunnan Yellow cattle) has been inter se breeding since 1980s. Genetic diversity of BMY cattle was extensively investigated using 16 microsatellite markers. A total of 130 microsatellite alleles and high allele size variance were detected. All loci displayed high genetic diversity with overall mean of N a = 8.13, PIC = 0.7224 and H e = 0.7666, which were higher than those of many other beef breeds. The allele-sharing neighbour-joining tree clearly displayed the new genotypic combinations and the minglement from both BMY cattle and Brahman. The results provided the genetic information to match the standards of new beef breed in South China.  相似文献   

12.
Stature is an important quantitative trait for cattle performance, which influences herd productivity. Previous studies have reported that an SNP (AC_000171.1:g.25015640G>T, rs109815800) in Pleomorphic adenoma gene 1 (PLAG1) on chromosome 14 (CHR14) is associated with bovine stature. To validate whether rs109815800 is associated with the body height of Chinese cattle, we carried out an association analysis using 558 adult cattle samples from seven populations. Then, 1038 samples from 38 Chinese cattle breeds were used to show the geographical distribution of this variant in China. The results showed that the Q allele (G allele) increased the height of cattle. Furthermore, the frequencies of Q allele in Chinese native breeds tend to decrease from northern China to southern China, and the frequency of Q allele in two Chinese beef cattle breeds is much higher than that in another 36 Chinese local cattle breeds. Our data suggest that the prevalence of the Q allele is correlated with latitude in China.  相似文献   

13.
Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 × 10?6) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle.  相似文献   

14.

Background

China exhibits a great diversity of ecosystems and abundant cattle resources, with nearly 30 million cattle from 53 indigenous breeds reared in specific geographic regions. To explore the genetic diversity and population structure of Chinese indigenous cattle, a population genetic analysis at both the individual and population levels was conducted and the admixture analysis was performed. We genotyped 572 samples from 20 Chinese indigenous cattle breeds using GeneSeek Genomic Profiler Bovine LD (GGP-LD, 30?K) and downloaded the published data of 77 samples from 4 worldwide commercial breeds genotyped with Illumina BovineSNP50 Beadchip (SNP50, 50?K).

Results

In principal component analysis (PCA) and neighbour-joining (NJ) tree analysis, samples of the same breeds were grouped together, leading to clear separation from other breeds. And Chinese indigenous cattle were clustered into two groups of southern and northern breeds, originated from Asian Bos indicus lineage and Eurasian Bos taurus lineage, respectively. In STRUCTURE K?=?2, a clear transition occurred from the northern breeds to the southern breeds. Additionally, the northern breeds contained a smaller Eurasian taurine (62.5%) descent proportion than that reported previously (more than 90%). In STRUCTURE K?=?3, a distinct descent was detected in the southern Chinese breeds, which could reflect a long-term selection history of Chinese indigenous cattle. The results from TreeMix and f3 statistic provided the evidence of an admixture history between southern breeds and northern breeds.

Conclusions

Consistent with the observed geographical distributions, Chinese indigenous cattle were divided into two genetic clusters, northern indigenous cattle and southern indigenous cattle. Three improved breeds in the northern area also exhibited northern indigenous ancestry. We found that the breeds distributed in the northern China showed more southern lineage introgression than previously reported. Central-located populations appeared to the admixture between southern and northern lineages, and introgression events from European cattle were observed in Luxi Cattle, Qinchuan Cattle and Jinnan Cattle. The study revealed the population structures and levels of admixture pattern among Chinese indigenous cattle, shedding light on the origin and evolutionary history of these breeds.
  相似文献   

15.
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (= 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.  相似文献   

16.
Fatty acid composition of meat is becoming more important due to consumer demand for high quality and healthy foods. The present study evaluated the associations of five candidate genes (FABP4, FASN, NR1H3, GH and SCD) with fatty acid composition in Korean cattle (Hanwoo). The g.3691G > A single nucleotide polymorphism (SNP) in the FABP4 gene had significant effects on high myristic acid (C14:0; P < 0.01) and palmitic (C16:0; P < 0.05) in animals having the GG genotype, and high arachidonic acid (C20:4; P < 0.05) in the AA genotype of Hanwoo. The FASN SNP at position g.17924G > A was also significantly associated with myristic acid (P < 0.01). In case of the SCD gene, a significant effect was only observed in myristoleic acid (C14:1; P < 0.01). However, SNPs in GH and NR1H3 genes showed no effects on fatty acid composition. The results indicate that SNPs in three candidate genes, FABP4, FASN and SCD, may be influential in breeding design for fatty acid composition in Hanwoo.  相似文献   

17.
Chen R  Yang Z  Ji D  Mao Y  Chen Y  Zhang Y  Hamza  Wang X  Li Y 《Animal biotechnology》2011,22(3):133-142
Mastitis is one of the most prevalent diseases in dairy cattle; CXCR1 plays a key role in mastitis resistance via IL8 signaling pathway, with the CXCR1 SNPs showing a different degree of mastitis resistance. To investigate the situation of CXCR1 polymorphisms in Chinese Holstein cattle and determine the relationship between the CXCR1 SNPs and mastitis resistance, the CXCR1 SNPs in 610 Chinese Holstein cattle of 30 families were investigated using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique. The results showed that four SNPs, -1830A > G, -1768T > A, -344T > C, and 783C > A were detected at 5' upstream and coding region. The correlation analysis demonstrated that -1830AA, -1768TT, and -344TT correlated significantly with the lowest SCS for each site, respectively. Haplotype analysis revealed Haplo2 (ATTA) correlated significantly with the lowest SCS. These findings indicated a prospect genetic marker of mastitis resistance in dairy cattle.  相似文献   

18.
B. An  J. Xia  T. Chang  X. Wang  L. Xu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2019,50(4):386-390
We performed a genome‐wide association study to identify candidate genes for body measurement traits in 463 Wagyu beef cattle typed with the Illumina Bovine HD 770K SNP array. At the genome‐wide level, we detected 18, five and one SNPs associated with hip height, body height and body length respectively. In total, these SNPs are within or near 11 genes, six of which (PENK, XKR4, IMPAD1, PLAG1, CCND2 and SNTG1) have been reported previously and five of which (CSMD3, LAP3, SYN3, FAM19A5 and TIMP3) are novel candidate genes that we found to be associated with body measurement traits. Further exploration of these candidate genes will facilitate genetic improvement in Chinese Wagyu beef cattle.  相似文献   

19.
Mao Y  Chang H  Yang Z  Zhang L  Xu M  Sun W  Chang G  Song G 《Biochemical genetics》2007,45(3-4):195-209
Levels of genetic differentiation, gene flow, and genetic structure of three indigenous cattle populations (Luxi, Bohai, and Minnan) and two reference cattle populations (Chinese Holstein and Qinhai yak) in China were estimated using the information from 12 microsatellites, and 141 microsatellite alleles were identified. The mean number of alleles per locus ranged from 2.9005 in yak to 4.9722 in Holstein. The observed heterozygosity ranged from 0.5325 (yak) to 0.7719 (Holstein); 29 private alleles were detected. The global heterozygote deficit across all populations amounted to 58.5% (p < 0.001). The overall significant (p < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 43.2%. The five cattle populations were highly differentiated (F st = 26.9%, p < 0.001) at all loci. The heterozygote deficit within the population was highest in Luxi cattle and lowest in yak. The average number of effective migrants exchanged per generation was highest (1.149) between Luxi and Holstein, and lowest (0.509) between Luxi and yak. With the application of prior population information, cluster analysis achieved posterior probabilities from 91% to 98% of correctly assigning individuals to populations. Combining the information of cluster analysis, gene flow, and Structure analysis, the five cattle populations belong to three genetic clusters, a taurine (Luxi and Chinese Holstein), a zebu (Bohai and Minnan), and a yak cluster. This indicates that Bohai black is closer to Bos indicus than Luxi cattle. The evolution and development of three indigenous cattle populations are discussed.  相似文献   

20.
Single-nucleotide polymorphisms (SNPs) in the coding and untranslated regions of heat shock 70 kDa protein 1A (HSP70A1A), an inducible molecular chaperone that is responsible for cellular protection against heat stress, have been reported as being associated with heat tolerance. A fragment of the HSP70A1A gene was amplified in Chinese Holstein cattle and eight novel mutations were found. We performed comprehensive linkage disequilibrium (LD) and haplotype analyses of the eight SNPs of the HSP70A1A gene and examined their involvement in heat resistance in 600 Chinese Holstein cattle. Our results revealed the presence of significant differences between individuals carrying haplotype 1 and those without haplotype 1 for most of the heat-tolerance traits. Haplotype 1 increased the risk of heat stress; however, association analysis of its combination with haplotype 2 showed the lowest rectal temperature and red blood cell K+ level, moderate respiratory rate, and the highest red blood cell NKA level, suggesting a heterozygote advantage in the penetration of the phenotype. Protein expression levels in white blood cells among haplotype combinations further confirmed the hypothesis that heterozygotes for haplotypes 1 and 2 are more sensitive to heat stress. We presume that these mutations may be useful in the future as molecular genetic markers to assist selection for heat tolerance in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号