首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Δ13C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
Two of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades. While inflammation is essential for host resistance to infections, it is detrimental when produced chronically or in excess and is linked to various diseases, most notably auto-immune diseases, auto-inflammatory disorders, cancer and septic shock. Essential regulators of inflammation are enzymes termed “the inflammatory caspases”. They are activated by cellular sensors of danger signals, the inflammasomes, and subsequently convert pro-inflammatory cytokines into their mature active forms. In addition, they regulate non-conventional protein secretion of alarmins and cytokines, glycolysis and lipid biogenesis, and the execution of an inflammatory form of cell death termed “pyroptosis”. By acting as key regulators of inflammation, energy metabolism and cell death, inflammatory caspases and inflammasomes exert profound influences on innate immunity and infectious and non-infectious inflammatory diseases. Christian R. McIntire and Garabet Yeretssian have contributed equally to this review.  相似文献   

6.
7.
8.
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.  相似文献   

9.
Heat shock proteins HSP70 and GP96: structural insights   总被引:3,自引:0,他引:3  
Several heat shock proteins (HSPs) act as potent adjuvants for eliciting anti-tumor immunity. HSP-based tumor vaccine strategies have been highly successful in animal models and are undergoing testing in clinical trials. It is generally accepted that HSPs, functioning as chaperones for tumor antigens, elicit tumor-specific adaptive immune responses. HSPs also appear to induce innate immune responses in an antigen-independent fashion. Innate responses generated by HSPs may contribute to anti-tumor immunity. Immunologically active chaperones with anti-tumor activity are referred to as “immunochaperones”. Here, we review the studies that address the role of structural domains or regions of the immunochaperones HSP70 and GP96 that may be involved in the induction of adaptive or innate immune responses. This article forms part of the Symposium in Writing “Thermal stress-related modulation of tumor cell physiology and immune responses”, edited by Elfriede Noessner.  相似文献   

10.
11.
Innate immune gene repertoires are restricted primarily to germline variation. Adaptive immunity, by comparison, relies on somatic variation of germline-encoded genes to generate extraordinarily large numbers of non-heritable antigen recognition motifs. Invertebrates lack the key features of vertebrate adaptive immunity, but have evolved a variety of alternative mechanisms to successfully protect the integrity of “self”; in many cases, these appear to be taxon-specific innovations. In the protochordate Branchiostoma floridae (amphioxus), the variable region-containing chitin-binding proteins (VCBPs) constitute a multigene family (comprised of VCBPs 1–5), which possesses features that are consistent with innate immune-type function. A large number of VCBP alleles and haplotypes are shown to exhibit levels of polymorphism exceeding the elevated overall levels determined for the whole amphioxus genome (JGI). VCBP genes of the 2 and 5 types are distinguished further by a highly polymorphic segment (exon 2) in the N-terminal immunoglobulin domain, defined previously as a “hypervariable region” or a “hotspot.” Genomic deoxyribonucleic acid (DNA) and complementary DNA (cDNA) sequences from large numbers of animals representing different populations reveal further significant differences in sequence complexity within and across VCBP2/5 haplotypes that arise through overlapping mechanisms of genetic exchange, gene copy number variation as well as mutation and give rise to distinct allelic lineages. The collective observations suggest that mechanisms were in place at the time of divergence of the cephalochordates that could selectively hyperdiversify immune-type receptors within a multigene family.  相似文献   

12.
13.
14.
Persson J  Vance RE 《Immunogenetics》2007,59(10):761-778
The interaction of bacterial pathogens with their hosts’ innate immune systems can be extremely complex and is often difficult to disentangle experimentally. Using mouse models of bacterial infections, several laboratories have successfully applied genetic approaches to identify novel host genes required for innate immune defense. In addition, a variety of creative bacterial genetic schemes have been developed to identify key bacterial genes involved in triggering or evading host immunity. In cases where both the host and pathogen are amenable to genetic manipulation, a combination of host and pathogen genetic approaches can be used. Focusing on bacterial infections of mice, this review summarizes the benefits and limitations of applying genetic analysis to the study of host–pathogen interactions. In particular, we consider how prokaryotic and eukaryotic genetic strategies can be combined, or “squared,” to yield new insights in host–pathogen biology.  相似文献   

15.
Rice (Oryza sativa) feeds over half of the global population. A web-based integrated platform for rice microarray annotation and data analysis in various biological contexts is presented, which provides a convenient query for comprehensive annotation compared with similar databases. Coupled with existing rice microarray data, it provides online analysis methods from the perspective of bioinformatics. This comprehensive bioinformatics analysis platform is composed of five modules, including data retrieval, microarray annotation, sequence analysis, results visualization and data analysis. The BioChip module facilitates the retrieval of microarray data information via identifiers of “Probe Set ID”, “Locus ID” and “Analysis Name”. The BioAnno module is used to annotate the gene or probe set based on the gene function, the domain information, the KEGG biochemical and regulatory pathways and the potential microRNA which regulates the genes. The BioSeq module lists all of the related sequence information by a microarray probe set. The BioView module provides various visual results for the microarray data. The BioAnaly module is used to analyze the rice microarray’s data set.  相似文献   

16.
Mutation theory of atherogenesis proved by “loss of heterozygosity” and microsatellite instability in the area of atherosclerotic plaques is complemented by data on epigenetic variability of genetic loci involved in the pathologic process. However, only recently large-scale analysis of epigenetic modifications in the human genome became possible. For the first time, the quantitative microarray-based methylation profiling of 1505 CpG-sites in 807 genes was performed in atherosclerotic plaques of aorta and carotid artery from humans using the GoldenGate Methylation Cancer Panel I (Illumina, United States). One hundred and three (7%) CpG-sites in 90 (11%) genes were differentially methylated between tissue samples. The most pronounced differences in DNA methylation levels were registered for a site located in CpG-island of the imprinted gene H19. By comparing 90 genes that were differentially methylated between tissue samples in our study, 10 genes (ICAM1, GSTM1, IGFBP1, POMC, APOA1, IL1RN, INS, LTA, MMP3, THBS2) were overlapped with data in the Human Genome Epidemiology Network (HuGENet), in which they were identified as candidates for cardiovascular disease continuum.  相似文献   

17.
This article presents an evaluation of two sampling methods for assessing the biodiversity of heavily vegetated wetlands. The aim was to establish an effective sampling regime to maximise total taxon richness and minimise sampling effort. Three Integrated Constructed Wetland (ICW) systems in Annetown Valley, Co. Waterford, SE of the Republic of Ireland, were sampled during spring and summer 2005. The two methods that were evaluated were pond netting and two types of horizontal activity traps, namely “horizontal activity traps” (HATs) and modified “horizontal activity traps” (modified HATs). The activity traps provided a one-way funnel system and were constructed from 2 l plastic bottles, allowing for the passive collection of taxa. HATs were designed to capture macroinvertebrates in open water and modified HATs, which were designed specifically for this study, were used to sample within stands of dense emergent vegetation. Results show that a combination of pond netting and activity traps will yield a more complete estimate of taxon richness. The performance of Modified HATs was not significantly different from that of the HATs in dense vegetation. Tests on the sampling effort required for each method are also discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: R. Céréghino, J. Biggs, B. Oertli and S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

18.
Date palm (Phoenix dactylifera L.) is one of the most important domesticated fruit trees in the Near East and North African countries. This tree has been, for several decades, in serious threat of being completely destroyed by the “Bayoud” disease caused by Fusarium oxysporum f. sp. albedinis. In this study, 18 Syrian date palm cultivars and four male trees were analyzed according to the identity of mitochondrial plasmid-like DNAs. A PCR strategy that employs plasmid-like DNAs-specific primer pair was used. These primers amplify a product of either 373-bp or 265-bp that corresponds to the S- (Bayoud-susceptible) or the R-plasmid (Bayoud-resistant), respectively. Generated data revealed that only six cultivars (“Medjool”, “Ashrasi”, “Gish Rabi”, “Khineze”, and yellow- and red-“Kabkab”) have the S-plasmid, suggesting their susceptibility to the fusariosis, while the remaining 12 cultivars and the four male trees contain the R-plasmid, suggesting their resistance to the fusariosis. The PCR process applied here has been proved efficient for the rapid screening for the presence of the S and R DNAs in Syrian date palm. PCR markers developed in this study could be useful for the screening of date palm lines growing in the field. The availability of such diagnostic tool for plasmid characterization in date palm would also be of great importance in establishing propagation and breeding programs of date palm in Syria.  相似文献   

19.
RNAseq and microarray methods are frequently used to measure gene expression level. While similar in purpose, there are fundamental differences between the two technologies. Here, we present the largest comparative study between microarray and RNAseq methods to date using The Cancer Genome Atlas (TCGA) data. We found high correlations between expression data obtained from the Affymetrix one-channel microarray and RNAseq (Spearman correlations coefficients of ∼0.8). We also observed that the low abundance genes had poorer correlations between microarray and RNAseq data than high abundance genes. As expected, due to measurement and normalization differences, Agilent two-channel microarray and RNAseq data were poorly correlated (Spearman correlations coefficients of only ∼0.2). By examining the differentially expressed genes between tumor and normal samples we observed reasonable concordance in directionality between Agilent two-channel microarray and RNAseq data, although a small group of genes were found to have expression changes reported in opposite directions using these two technologies. Overall, RNAseq produces comparable results to microarray technologies in term of expression profiling. The RNAseq normalization methods RPKM and RSEM produce similar results on the gene level and reasonably concordant results on the exon level. Longer exons tended to have better concordance between the two normalization methods than shorter exons.  相似文献   

20.
Activation tagging is a powerful technique for generating gain-of-function mutants in plants. We developed a new vector system for activation tagging of genes in “transformed hairy roots”. The binary vector pHR-AT (Hairy Root-Activation Tagging) and its derivative pHR-AT-GFP contain a cluster of rol (rooting locus) genes together with the right border facing four tandem repeats of the cauliflower mosaic virus (CaMV) 35S enhancer element on the same T-DNA. Transformation experiments using Arabidopsis, potato, and tobacco as model plants revealed that upon inoculating plants with Agrobacterium tumefaciens harboring these vectors, a large number of independently transformed roots could be induced from explants within a short period of time, and root culture lines were subsequently established. Molecular analyses of the pHR-AT-GFP-transformed Arabidopsis lines showed that expression of the genes adjacent to the T-DNA insertion site was significantly increased. This system may facilitate application of the activation-tagging approach to plant species that are recalcitrant to the regeneration of transgenic plants. High-throughput metabolic profiling of activation-tagged root culture lines will offer opportunities for identifying regulatory or biosynthetic genes for the production of valuable secondary metabolites of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号