首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prophenoloxidase activating enzyme (ppA), a serine proteinase catalyzing the conversion of prophenoloxidase to an active phenoloxidase, has a molecular mass of about 36 kDa in its active form. This protein was cloned from a blood cell cDNA library and its corresponding cDNA of 1736 base pairs encodes a zymogenic protein (proppA) of 468 amino acids. An antibody raised against a synthetic peptide derived from a region of the cDNA sequence could efficiently inhibit the beta-1,3-glucan triggered activation of prophenoloxidase in vitro. The C-terminal half of the proppA is composed of a typical serine proteinase domain, with a sequence similar to other invertebrate and vertebrate serine proteinases. The N-terminal half contains a cationic glycine-rich domain, a cationic proline-rich domain and a clip-domain, in which the disulfide-bonding pattern is likely to be identical to those of the horseshoe crab big defensin and mammalian beta-defensins. Antibodies made against both the C- and the N-terminal halves recognize two proppAs under reducing conditions. However, under nonreducing conditions only the anti-C antibody recognized the two proppAs, which suggests that a conformational change takes place upon reduction that allows the anti-N to react with the N-terminal half of proppA. The recombinant clip-domain in crayfish proppA was overexpressed in Escherichia coli and the resulting peptide exhibited antibacterial activity against Gram-positive bacterial strains such as Micrococcus luteus Ml11 and Bacillus megaterium Bm11 with 50% growth inhibitory concentrations of 1.43 microM and 17.9 microM, respectively. These results suggest that the clip-domains in proppAs may function as antibacterial peptides.  相似文献   

2.
Zhu L  Song L  Mao Y  Zhao J  Li C  Xu W 《Molecular biology reports》2008,35(2):257-264
The serine proteases with clip domain are involved in various innate immune functions in invertebrate such as antimicrobial activity, cell adhesion, pattern recognition and regulation of the prophenoloxidase system. A serine protease with clip-domain cDNA (Cf SP) was obtained by Expressed sequence taggings (ESTs) method and rapid amplification of cDNA ends (RACE). The Cf SP full-length cDNA was of 1,152 bp, including a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 81 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 1,008 bp encoding a polypeptide of 336 amino acids with a putative signal peptide of 19 amino acids. The deduced amino acid sequence of Cf SP contained an amino-terminal clip domain with three disulfide bonds formed six conserved Cys residues, a carboxyl-terminal trypsin-like domain with the conserved His-Asp-Ser catalytic triad, and a low complexity linker sequence. The Cf SP was strongly expressed in hemocytes and the mRNA expression of Cf SP was up-regulated and increased 3.2-fold and 2.6-fold at 16 h after injection of Vibrio anguillarum and Micrococcus luteus. The results suggested that Cf SP gene might be involved in immune response of Gram-negative and Gram-positive microbial infection in scallop.  相似文献   

3.
4.
5.
分别提取罗氏沼虾和日本沼虾血细胞总RNA,RT-PCR扩增获得特异性cDNA片段,纯化后克隆到T载体上。序列测定表明所克隆的两种沼虾溶菌酶基因的开放阅读框(ORF)为477bp,共编码158个氨基酸,包括溶菌酶成熟肽140个氨基酸残基和信号肽18个氨基酸残基。同源性分析表明,罗氏沼虾和日本沼虾溶菌酶基因的碱基序列及推测氨基酸序列高度同源,分别为99.4%和98.1%。两种沼虾溶菌酶基因的碱基序列和推测氨基酸序列与Gen-Bank上其他对虾溶菌酶的同源性达83.0%和80.0%以上。两种沼虾溶菌酶都具有c-型溶菌酶典型的两个酶活性位点(Glu51)和(Asp68),以及8个保守结构氨基酸残基Cys,且在101、106和107位上缺少Asp,因而推测本实验所克隆的两种沼虾溶菌酶基因属c-型溶菌酶基因的非钙结合亚型。以PCR法制备罗氏沼虾溶菌酶基因的生物素标记探针,斑点杂交检测感染弧菌后溶菌酶基因mRNA在各组织中的转录水平,结果表明受感染6h后在眼、肌肉、鳃、肝胰腺、肠管中的表达量均有升高,其中在肝胰腺中的表达量最高,约为对照组的560%。在不同感染时间里,肝胰腺中该基因表达量有较大的变化:感染后3h表达量最低,24h后表达量升至最高,大约为对照组的430%,48h时的表达量又有所下降,但仍明显高于对照组(约为330%)。受弧菌感染后罗氏沼虾溶菌酶基因转录的上调证明溶菌酶基因在非特异性免疫中的直接作用,同时表明肝胰腺可能在沼虾的免疫防御过程起重要作用。    相似文献   

6.
The complete amino acid sequence of a factor V activator (VLFVA) is deduced from the nucleotide sequence of a cDNA encoding the enzyme. The cDNA was isolated by PCR screening a venomous gland cDNA library of Central Asian Vipera lebetina snake. The full-length cDNA clone, derived from two overlapping fragments, comprises 1563 basepairs which encode an open reading frame of 259 amino acids. The amino acid sequence of VLFVA (235 amino acids) shows significant homology with snake venom and mammalian serine proteinases. It contains 12 half-cysteines which form, by analogy with other serine proteinases, 6 disulfide bridges. VLFVA has the catalytic triad His43-Asp88-Ser182. The amino terminal amino acid valine is preceded by 24 amino acids: a putative signal peptide of 18, mainly hydrophobic, amino acids and an activating peptide of 6, mainly hydrophilic amino acid residues. This is the first cloned factor V activating enzyme from snake venom.  相似文献   

7.
8.
9.
10.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

11.
应用RACE技术克隆脊尾白虾血蓝蛋白大亚基基因, 并通过攻毒实验揭示脊尾白虾血蓝蛋白基因的先天免疫防御作用, 为脊尾白虾(Exopalaemon carinicauda)的免疫防治研究提供依据和思路。研究成功克隆了脊尾白虾血蓝蛋白大亚基基因全长cDNA序列, 该大亚基cDNA全长 2192 bp, 开放式阅读框长 2034 bp, 5′非编码区长 21 bp, 3′非编码区长 137 bp, 将该基因命名为 EcHcL。EcHcL编码 667 个氨基酸, 前 21 个氨基酸组成信号肽, 推测成熟肽的分子量为 78.5 kD。Blast比对结果显示, 由脊尾白虾血蓝蛋白EcHcL序列推导的氨基酸序列与日本沼虾、凡纳滨对虾血蓝蛋白氨基酸序列的同源性分别达到 87%、73%, 其M结构域氨基酸序列与斑节对虾、日本对虾等物种同源性性高达 90% 左右, 由此推断该cDNA序列属于血蓝蛋白家族。组织表达分析结果显示, EcHcL基因在脊尾白虾鳃、卵巢、肝胰腺、心脏、肠、肌肉、胃、腹神经节、眼柄、血细胞中均有表达, 肝胰腺中相对表达量最高。Real-time PCR分析发现EcHcL基因在金黄色葡萄球菌、副溶血弧菌和对虾白斑综合征病毒(WSSV)感染后脊尾白虾肝胰腺和血细胞中的表达量显著增加, 并具有不同的时空表达模式, 推测脊尾白虾EcHcL基因在免疫防御中具有重要作用。  相似文献   

12.
13.
脊尾白虾组织蛋白酶L基因的克隆及其表达分析   总被引:3,自引:0,他引:3  
根据本实验室构建的脊尾白虾(Exopalaemon carinicauda)血细胞全长cDNA文库获得的EST序列,利用RACE技术克隆获得脊尾白虾组织蛋白酶L基因的cDNA全长,命名为EcCatL基因.该序列全长1136 bp,包括5'非编码区24 bp,开放阅读框960 bp和3'非编码区152 bp,开放阅读框共编码319个氨基酸,预测相对分子量为35.30×103,理论等电点为5.27.同源性分析表明,脊尾白虾组织蛋白酶LEcCatL氨基酸序列与其它甲壳动物高度保守,与变色小长臂虾(Palaemonetes varians)及北极甜虾(Pandalus borealis) CatL的同源性分别为92%和76%.系统进化分析表明,EcCatL基因氨基酸序列与变色小长臂虾的CatL聚为一支.荧光定量PCR分析结果表明,EcCatL基因在血细胞、鳃、肝胰腺、肌肉、卵巢、肠、胃及眼柄中均有表达,其中肝胰腺中的相对表达量最高.感染鳗弧菌及WSSV后6h和12h,脊尾白虾血细胞和肝胰腺中EcCatL的表达量较对照组均极显著增加(P<0.01),且具有明显的时间差异性,表明EcCatL基因在脊尾白虾免疫反应中具有重要作用.  相似文献   

14.
Factor I is a novel serine protease that regulates complement activation. Here we report the complete primary structure of two isotypic factor Is isolated from the common carp ( Cyprinus carpio), a pseudotetraploid teleost. A carp hepatopancreas cDNA library was screened using two RT-PCR-amplified cDNA fragments encoding part of the carp factor I-like serine protease domain. Two distinct cDNA clones, designated FI-A and FI-B, were isolated. Their deduced amino acid sequences share 75.2% identity with each other. FI-A has a typical factor I-like domain organization composed of two disulfide-linked polypeptides (H-chain and L-chain). On the other hand, FI-B contains a novel sequence of 115 amino acids inserted at the N-terminus of the H-chain. Genomic Southern hybridization suggests that FI-A and FI-B are encoded by distinct genes in the carp genome. Expression analysis by RT-PCR revealed that the major site of FI-A expression is the ovary, whereas FI-B expression is detected mainly in the hepatopancreas at a level higher than that of FI-A. The present data, taken together, suggest that carp have duplicated genes coding for factor I, and FI-B with the novel insertion plays a dominant role in the complement system. In addition, homology search of the fugu genome database using the carp FI-A and FI-B sequences identified a putative fugu factor I gene, which has an exon/intron organization different from that of the human orthologue.  相似文献   

15.
The serine protease gene from a thermophilic fungus Thermoascus aurantiacus var. levisporus, was cloned, sequenced, and expressed in Pichia pastoris and the recombinant protein was characterized. The full-length cDNA of 2,592 bp contains an ORF of 1,482 bp encoding 494 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with subtilisin serine proteases. The putative enzyme contained catalytic domain with active sites formed by three residues of Aspl83, His215, and Ser384. The molecular mass of the recombinant enzyme was estimated to be 59.1 kDa after overexpression in P. pastoris. The activity of recombinant protein was 115.58 U/mg. The protease exhibited its maximal activity at 50°C and pH 8.0 and kept thermostable at 60°C, and retained 60% activity after 60 min at 70° C. The protease activity was found to be inhibited by PMSF, but not by DTT or EDTA. The enzyme has broad substrate specificity such as gelatin, casein and pure milk, and exhibiting highest activity towards casein.  相似文献   

16.
17.
18.
19.
Purified cathepsin L from carp, Cyprinus carpio, consists of a 28 kDa single-chain form that is different from the 24 and 5 kDa mammalian two-chain form. We cloned cathepsin L from carp hepatopancreas. The sequence consisted of a 1490 bp cDNA and a 1014 bp open reading frame, encoding a deduced protein of 337 amino acids that is likely processed to an active enzyme (single-chain form) with 222 amino acids. Its similarity to other types of vertebrate cathepsin L is less than 69%. Mammalian cathepsin L is further processed to a two-chain form, but possibly this is not the case with carp cathepsin L: the P1 site where cleavage occurred in the two-chain form of mammalian cathepsin L contains a serine, while carp cathepsin L processes a valine. Therefore, carp cathepsin L may have a different mechanism of action from mammalian cathepsin L.  相似文献   

20.
《Insect Biochemistry》1991,21(4):363-373
A prophenoloxidase was purified from blood cells of the crayfish Pacifastacus leniusculus. The purified proenzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and had a molecular mass of 76 kDa under both non-reducing and reducing conditions. The crayfish prophenoloxidase was a glycoprotein, with an isoelectric point of about 5.4.A 36 kDa serine proteinase, isolated and purified from crayfish blood cells (Aspán et al., 1990b, Insect Biochem.20, 709–718), could convert the 76 kDa prophenoloxidase to phenoloxidase by an apparent proteolytic cleavage, since the molecular masses of two active enzymes, phenoloxidases, were 60 and 62 kDa. A commercial serine proteinase, trypsin, activated prophenoloxidase to phenoloxidase, and as a result a 60 kDa protein was produced.In the blood cells of crayfish four serine proteinases or 3H-DFP binding proteins are present, with masses of 36, 38, 50 and 67 kDa. However, 3H-DFP labelling of proteins in blood cells lysate, prepared in its inactive form, only yielded labelled bands of 50 and 67 kDa, whereas addition of an elicitor to prophenoloxidase system activation, a β-1,3-glucan, resulted in the appearance of four 3H-DFP labelled proteins, with molecular masses of 67, 50, 38 and 36 kDa, respectively. Thus, the 36 kDa endogenous serine proteinase, the prophenoloxidase activating enzyme, ppA, may be present as an inactive precursor in crayfish blood cells. The 38 and 36 kDa proteinases could both cleave the chromogenic peptide S-2337 [Bz-Ile-Glu-(γ-O-Piperidyl)-Gly-Arg-p-nitroaniline], and specifically bind prophenoloxidase.These results show that crayfish prophenoloxidase, the terminal enzyme of the prophenoloxidase activating cascade, a proposed defence pathway in arthropod blood, can be converted to active enzyme by an apparent proteolytic cleavage, not only by a commercial proteinase, but also by an endogenous serine type proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号