首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor type-e (TGFe) is a novel TGF which was first described as a growth factor possibly involved in autocrine stimulation of anchorage-independent growth of carcinoma cells. Its later identification in normal tissues, plasma, and platelets suggested a role for TGFe in normal cell growth. This study shows that TGFe stimulates both anchorage-dependent and -independent growth of epithelial and fibroblastic cells of nonneoplastic origin. The mitogenic activity of TGFe in monolayer is slightly less than that of basic fibroblast growth factor, equipotent to that of epidermal growth factor, and greater than that of IGF-1. TGFe acts as a progression factor for both AKR-2B and Balb-3T3 cells. TGFe is also a potent mitogen for normal human epidermal keratinocytes and may therefore play a role in epidermal growth and regeneration.  相似文献   

2.
This study reports on the effects of heparin, basic and acidic fibroblast growth factors (bFGF and aFGF, respectively), and transforming growth factor type-e (TGFe) on the growth of a human adrenocortical carcinoma cell line, SW-13. Heparin has previously been shown to inhibit growth in several cell types, including smooth muscle cells, certain fibroblasts, and epithelial cells, and to modulate the effects of fibroblast growth factors. Whereas bFGF and aFGF bind tightly to heparin and elute from a heparin-Sepharose column with 2 M NaCl and 1.6 M NaCl, respectively, TGFe binds to heparin with lower affinity and can be eluted from heparin-Sepharose column with 0.5 M NaCl. TGFe is a polypeptide unrelated to FGF, is present in neoplastic and nonneoplastic tissues, and stimulates the growth of certain epithelial cells and fibroblasts in soft agar and monolayer. Since the growth of SW-13 cells is stimulated by TGFe and by bFGF, we hypothesized that heparin would inhibit the growth of SW-13 cells by binding to these growth factors and that the effects of heparin could be overcome with the addition of either growth factor. Our experiments confirmed that heparin inhibits the growth of SW-13 cells. A dose-dependent growth inhibition was observed in both monolayer and soft agar. The inhibition in monolayer was partially reversed upon heparin withdrawal. The effects of heparin in both monolayer and soft agar were at least partially overcome by TGFe and by basic or acidic FGF. Overall protein synthesis does not appear to be affected by heparin as measured by [35S]methionine uptake. In contrast, epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) were unable to overcome heparin-induced inhibition both in monolayer and in soft agar. Heparin also inhibited [3H]thymidine incorporation in AKR-2B and partially inhibited AKR-2B cell stimulation by TGFe; however, it further potentiated the already potent stimulation by bFGF. We propose that heparin, TGFe, bFGF, and aFGF modulate the growth of SW-13 cells and possibly of other epithelial cells in complex ways and that heparin-like substances present in the extracellular matrix play an important role in the control of epithelial growth.  相似文献   

3.
Abstract

We have identified the receptor for epithelial type transforming growth factor (TGFe). TGFe, a member of the epithelin/granulin family of proteins, is present primarily in tissues of epithelial origin. It is a powerful mitogen for epithelial and fibroblastic cells. TGFe, iodinated using an immobilized glucose oxidase-lactoperoxidase method, was chemically crosslinked to receptors on membranes isolated from SW-13 adrenal carcinoma cells by the crosslinker disuccinimidyl suberate (DSS). The receptor appears to be a protein which migrates at an apparent molecular weight of approximately 170-175 kDa under reducing and nonreducing conditions in SDS-polyacrylamide gels.  相似文献   

4.
Transforming growth factor type e (TGFe) is a heat- and acid-stable polypeptide with an apparent molecular weight of 22,000, which stimulates the proliferation of certain epithelial and mesenchymal cells in monolayer and soft agar. TGFe has been purified to homogeneity. Initial acid-ethanol extraction of bovine kidney was followed by batch ion-exchange chromatography utilizing Bio Rex 70 resin. The activity eluted from the Bio Rex 70 resin was concentrated and diafiltered using an Amicon concentrator equipped with an S1Y10 spiral membrane, then was further purified by Bio-Gel P-60 molecular sieve chromatography. Active fractions from molecular sieve chromatography were pooled and purified by heparin-Sepharose affinity chromatography, followed by reverse-phase high-performance liquid chromatography using a microbore C-8 column. The final purification step involved electro-elution of TGFe separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purity of TGFe was assessed to be greater than 90%.  相似文献   

5.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary Normal rat prostate epithelial cell growth requires both epidermal growth factor and heparin-binding growth factor/prostatropin. In contrast, epithelial cells derived from the transplantable Dunning R3327H rat tumor require either epidermal growth factor or heparin-binding growth factor/prostatropin. Transforming growth factor type beta inhibited normal epithelial cell growth. Transforming growth factor beta inhibited epidermal growth factor-dependent growth of tumor epithelial cells, independent of epidermal growth factor concentrations. Transforming growth factor beta increased the effective dose of heparin-binding growth factor type 1 required to support tumor epithelial cell growth by 10-fold but saturating levels of heparin-binding growth factor type 1 (290 pM) completely attenuated the inhibitory effect of transforming growth factor beta. These results suggest that prostate tumor epithelial cells may escape the inhibitory effect of transforming growth factor beta as a consequence of alteration of the concurrent requirement for both epidermal growth factor (or homologues) and heparin-binding growth factors. This work was supported by NCI Grant CA37589. Editor’s Statement The observation that heparin-binding growth factor/prostatropin can counteract the inhibitory effect of transforming growth factor beta in prostate epithelial cells may help explain how some cancers avoid the action of growth inhibitors and provides a model for studying how inhibitory peptides overcome the stimulatory signals generated by growth factors.  相似文献   

7.
A polypeptide growth factor has been partially purified from medium conditioned by the human adrenocortical carcinoma cell line SW13. This factor, designated h-TGFe, stimulates anchorage-independent growth of the SW13 cells. Similar activity was observed in human milk, and in conditioned media from seven of 14 epithelial cell lines. The SW13-derived activity is stable to low pH and 8M urea but labile to dithiothreitol and 2% sodium dodecyl sulfate. Human TGFe does not bind to heparin and fails to stimulate growth of endothelial cells in monolayer culture. The apparent molecular weight of h-TGFe is 59k by size exclusion chromatography in the presence of 8M urea and the activity binds strongly to cation exchangers. The activity elutes at 15-30% acetonitrile from a C18 reverse-phase column and has been partially purified by using a four-step chromatographic procedure. TGFe appears to be a novel growth factor produced by many epithelial cells and tissues.  相似文献   

8.
We have purified a novel form of epithelial transforming growth factor (TGFe) from bovine kidney. Acid ethanol extracts of kidney were fractionated by size exclusion, reverse phase and cation exchange chromatography and activity was monitored by measuring growth of SW13 adrenocortical carcinoma cells in soft agar. The purified material was highly cationic, bound weakly to heparin and gave a band at 13-15000 Mr by SDS-PAGE following Bolton-Hunter iodination. This band correspond to the migration of biological activity extractable from gel slices. The results suggest that we have isolated a truncated form of TGFe which nonetheless retains biological activity.  相似文献   

9.
PC12 cells, which differentiate morphologically and biochemically into sympathetic neruonlike cells in response to nerve growth fact, also respond to epidermal growth factor. The response to epidermal growth factor is similar in certain respects to the response to nerve growth fact. Both peptides produce rapid increases in cellular adhesion and 2-deoxyglucose uptake and both induce ornithine decarboxylase. But nerve growth factor causes a decreased cell proliferation and a marked hypertrophy of the cells. In contrast, epidermal growth factor enhances cell proliferation and does not cause hypertrophy. Nerve growth factor induces the formation of neuritis; epidermal growth factor does not. When both factors are presented simultaneously, the cells form neurites. Furthermore, the biological response to epidermal growth fact, as exemplified by the induction of ornithine decarboxylase, is attenuated by prior treatment of the cells with nerve growth factor. PC12 cells have epidermal growth factor receptors. The binding of epidermal growth factor to these receptors is rapid and specific, and exhibits an equilibrium constant of 1.9 x 10(-9) M. Approximately 80,000 receptors are present per cell, and this number is independent of cell density. Treatment of the cells with nerve growth factor reduces the amount of epidermal growth factor binding by at least 80 percent. The decrease in receptor binding begins after approximately 12-18 h of nerve growth factor treatment and is complete within 3 d. Scratchard plots indicate that the number of binding sites decreases, not the affinity of the binding sites for epidermal growth factor.  相似文献   

10.
Summary The adult mouse submandibular salivary gland provides a good model system to study gene regulation during normal and abnormal cell behavior because it synthesizes functionally distinct products ranging from growth factors and digestive enzymes to factors of relevance to homeostatic mechanisms. The present study describes the long-term growth and differentiation of submandibular salivary epithelial cells from adult male mice as a function of the culture substratum. Using a two-step partial dissociation procedure, it was possible to enrich for ductal cells of the granular convoluted tubules, the site of epidermal growth factor synthesis. Long-term cell growth over a period of 2 to 3 mo. with at least 3 serial passages was obtained only within three-dimensional collagen gels. Cells grew as ductal-type structures, many of which generated lumens with time in culture. Electron microscopic analysis in reference to the submandibular gland in vivo revealed enrichment for and maintenance of morphologic features of granular convoluted tubule cells. Reactivity with a keratin-specific monoclonal antibody established the epithelial nature of the cells that grew within collagen. Maintenance of cell differentiation, using immunoreactivity for epidermal growth factor as criterion, was determined by both cytochemical and biochemical approaches and was found to be dependent on the collagen matrix and hormones. Greater than 50% of the cells in primary collagen cultures contained epidermal growth factor only in the presence of testosterone and triiodothyronine. In contrast, cells initially seeded on plastic or cycled to plastic from collagen gels were virtually negative for epidermal growth factor. Biochemical analysis confirmed the presence of a protein with an apparent molecular weight of 6000 which comigrated with purified mouse epidermal growth factor. Epidermal growth factor was also present in detectable levels in Passage 1 cells. This culture system should permit assessment of whether modulation of submandibular gland ductal cell growth can be exerted via a mechanism that in itself includes epidermal growth factor and its receptor and signal transduction pathway. This work was supported by Public Health Service grant DE07766 from the National Institute of Dental Research, National Institutes of Health, Bethesda, MD.  相似文献   

11.
Transforming growth factors and control of neoplastic cell growth   总被引:18,自引:0,他引:18  
Transforming growth factors (TGFs) are peptides that affect the growth and phenotype of cultured cells and bring about in nonmalignant fibroblastic cells phenotypic properties that resemble those of malignant cells. Two types of TGFs have been well characterized. One of these, TGF alpha, is related to epidermal growth factor (EGF) and binds to the EGF receptor, whereas the other, TGF beta, is not structurally or functionally related to TGF alpha or EGF and mediates its effects via distinct receptors. TGF beta is produced by a variety of normal and malignant cells. Depending upon the assay system employed, TGF beta has both growth-inhibitory and growth-stimulating properties. Many of the mitogenic effects of TGF beta are probably an indirect result of the activation of certain growth factor genes in the target cell. The ubiquitous nature of the TGF beta receptor and the production of TGF beta in a latent form by most cultured cells suggests that the differing cellular responses to TGF beta are regulated either by events involved in the activation of the factor or by postreceptor mechanisms. The combined effects of TGF beta with other growth factors or inhibitors evidently play a central role in the control of normal and malignant cellular growth as well as in cell differentiation and morphogenesis. Since transforming growth factor as a concept has partially proven misleading and insufficient, there is a need to find a new nomenclature for these regulators of cellular growth and differentiation.  相似文献   

12.
13.
This study was undertaken to determine the immunocytochemical localization of transforming growth factor α, epidermal growth factor and epidermal growth factor receptor in the endometrium of ovariectomized cats treated with oestradiol-17β and/or progesterone and in the endometrium and placenta of pregnant cats. Specific immunostaining was observed for all three antibodies. Moderate immunostaining for transforming growth factor α was observed in the epithelium of ovariectomized and oestrogen-treated cats. Dark epithelial staining was observed throughout pregnancy. The epithelial cells in progesterone-treated and peri-implantation animals contained dense deposits of reaction product, which were not reduced in intensity when immunoabsorbed antiserum was used. For epidermal growth factor, light--moderate epithelial staining was observed in ovariectomized and steroid-treated animals, and this increased in pregnant cats. Stromal staining for both the transforming and the epidermal growth factors was limited in steroid-treated animals and increased as pregnancy continued. Dark staining for epidermal growth factor receptor was observed in the epithelium and stroma in all the animals studied. The tips of surface epithelial convolutions in the non-implantation sites were always more darkly stained than in other regions of the surface epithelium. Staining in the placental trophoblast was limited to the syncytiotrophoblast for the two growth factors and the cytotrophoblast for the receptor during most of pregnancy and was absent late in pregnancy. The placental maternal giant cells contained specific immunoreactivity for all the immunogens from the middle of pregnancy to term. This study demonstrates that the two growth factors and the epidermal growth factor receptor are present in the endometrium and placenta of cats and suggests that these growth factors may play an autocrine/paracrine role during reproduction  相似文献   

14.
Cells of epithelial origin generally require ethanolamine to grow in culture; when these cells are grown without ethanolamine, the phosphatidylethanolamine content of their membrane phospholipid becomes 1/2 to 1/3 of the normal amount, and growth stops. We have hypothesized that growth ceases because the phospholipid environment becomes unsuitable for membrane-associated function. Using ethanolamine-requiring rat mammary cells, we have investigated the possible effect of phosphatidylethanolamine deficiency on the binding characteristics of epidermal growth factor. Apparent dissociation constant for the high-affinity sites in cells having normal membrane phospholipid was 1.7 X 10(-10) M, whereas that of phosphatidylethanolamine-deficient cells was 2.7 X 10(-10) M: the difference was small, but significant. Pretreatment with phorbol ester caused the loss of high-affinity sites in cells having normal membrane, whereas binding characteristics of epidermal growth factor became refractory to the pretreatment in phosphatidylethanolamine-deficient cells. In addition, the rate of internalization of bound epidermal growth factor in phosphatidylethanolamine-deficient cells was about 1/4 of normal cells. Further, whether cells had normal or phosphatidylethanolamine-deficient membranes seemed to affect the phosphorylation patterns of membrane proteins in response to epidermal growth factor or phorbol ester. These results suggest that membrane phospholipid environment affects the activity of the epidermal growth factor receptor.  相似文献   

15.
We prepared methyl 2,5-dihydroxycinnamate as a stable analogue of erbstatin, a tyrosine kinase inhibitor. This analogue was about 4 times more stable than erbstatin in calf serum. It inhibited epidermal growth factor receptor-associated tyrosine kinase in vitro with an IC50 of 0.15 μg/ml. It also inhibited in situ autophosphorylation of epidermal growth factor receptor in A431 cells. Methyl 2,5-dihydroxycinnamate was shown to delay the S-phase induction by epidermal growth factor in quiescent normal rat kidney cells, without affecting the total amount ofDNA synthesis. The effect of erbstatin on S-phase induction was smaller, possibly because of its shorter life time.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) purified from platelets is a potent growth inhibitor of several normal epithelial cell types in culture. In contrast, some carcinoma cell lines derived from tumors of these same tissues are resistant to this factor. Using recombinant human TGF-beta, the authors have confirmed these results with six normal human epidermal keratinocyte strains and four human epidermal squamous carcinoma cell lines. However, the sensitivity of normal cells to TGF-beta was found to depend on the culture conditions. When grown in a specialized nutrient medium supplemented with pituitary extract, keratinocytes were completely inhibited by the addition of 0.3 ng/ml TGF-beta. In contrast, when their growth was supported by cocultivation with 3T3 fibroblast feeder cells, 30- to 100-fold higher concentrations of TGF-beta were required to achieve comparable growth inhibition. This differential sensitivity occurred despite the fact that in both culture systems TGF-beta in the culture medium had a half-life of about 50 minutes, becoming tightly bound to the surface of the culture dish. Bound TGF-beta proved to be biologically active and stable for about a week in the absence of 3T3 feeder cells. Incubating 3T3 cells on TGF-beta-coated dishes, however, resulted in nearly quantitative removal and degradation of the TGF-beta within 2 days, permitting normal rates of keratinocyte growth. The binding of TGF-beta to surfaces and the ability of fibroblasts to attenuate its inhibitory activity for epithelial cells must be considered when evaluating in vitro models and in planning strategies for the use of this factor in vivo.  相似文献   

17.
Mouse neuroblastoma Neuro-2A cells produce transforming growth factors during exponential growth in a defined hormone-free medium, which, on Bio-Gel columns in 1 M HAc, elute at a molecular size of 15 to 20 kilodaltons (kDa). These neuroblastoma-derived transforming growth factors have strong mitogenic activity, but they do not compete with epidermal growth factor for receptor binding (E. J. J. van Zoelen, D. R. Twardzik, T. M. J. van Oostwaard, P. T. van der Saag, S. W. de Laat, and G. J. Todaro, Proc. Natl. Acad. Sci. U.S.A. 81:4085-4089, 1984). In this study approximately 80% of the mitogenic activity was immunoprecipitated by antibodies raised against platelet-derived growth factor (PDGF). Immunoblotting indicated a true molecular size of 32 kDa for this PDGF-like growth factor. Analysis of poly(A)+ RNA from Neuro-2A cells demonstrated the expression of the c-sis oncogene in this cell line, whereas in vitro translation of the RNA yielded a 20-kDa protein recognized by anti-PDGF antibodies. Separation by reverse-phase high-pressure liquid chromatography demonstrated the presence of two distinct mitogenic activities in neuroblastoma-derived transforming growth factor preparations, one of which is antigenically related to PDGF. Both activities had the ability to induce anchorage-independent growth in normal rat kidney cells, both in the presence and in the absence of epidermal growth factor. It is concluded that Neuro-2A cells express c-sis with concomitant production and secretion of a PDGF-like growth factor, which plays a role in the induction of phenotypic transformation on normal rat kidney cells.  相似文献   

18.
Cool-1 (cloned-out of library 1) has a key role in regulating epidermal growth factor receptor (EGFR) degradation. Here, we show that Cool-1 performs this function by functioning as both an upstream activator and downstream target for Cdc42. EGF-dependent phosphorylation of Cool-1 enables it to act as a nucleotide exchange factor for Cdc42 and to form a complex with the E3 ligase Cbl, thus regulating Cbl-catalysed EGFR degradation. The EGF-dependent phosphorylation is normally transient; however, Cool-1 phosphorylation is sustained in cells expressing v-Src and is essential for cellular transformation, as well as for v-Src-induced tumour formation in mice. These findings demonstrate that the regulated phosphorylation of Cool-1 is necessary to maintain the balance between normal signalling by EGFR and Src versus aberrant growth and transformation.  相似文献   

19.
In this study we have investigated the ability of epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF beta) together with retinoic acid (RA) at saturating concentrations to induce phenotypic transformation of normal rat kidney (NRK) cells in a growth factor-defined medium. This medium contains serum in which all growth factor activity has been chemically inactivated, thereby eliminating the effects of growth factors from serum in the assay. It is shown that neither TGF eta nor a ligand binding to the EGF receptor is essential for phenotypic transformation of NRK cells, since anchorage-independent growth is also induced by EGF in combination with RA and by PDGF in combination with RA and TGF beta. Our data indicate strong similarities between TGF beta and RA in their ability to act as modulators for phenotypic transformation. In addition, both agents enhance the number of EGF receptors in NRK cells, without affecting the number of PDGF receptors. On the other hand, TGF beta has mitogenic effects on a number of non-transformed cell lines, such as Swiss 3T3 fibroblasts, particularly when assayed in the absence of insulin, whereas RA is mitogenic for these cells only in the presence of insulin. These data demonstrate that phenotypic transformation of NRK cells requires specific combinations of polypeptide growth factors and modulating agents, but that this process can be induced under many more conditions than previously described. Moreover, our data point toward both parallels and differences in the activities of TGF beta and RA.  相似文献   

20.
Cultured bovine aortic endothelial cells (BAEC) can be maintained at saturation density for several weeks in the absence of serum. These cells retain viability and normal culture morphology, and continuously produce a growth factor for mesenchymally derived cells–the endothelium-derived growth factor (EDGF). The amount and specific activity of EDGF that is produced by BAEC under serum-free conditions remains constant for weeks. The levels of EDGF produced under these serum-free conditions is equivalent to levels produced in medium containing 5% plasma-derived serum. EDGF has been found to be trypsin sensitive, acetone and ammonium sulfate precipitable, and resistant to heat and sodium dodecyl sulfate treatment. Gel filtration on Sephacryl S-200 in the presence of formic acid (1%) yields two major peaks of activity corresponding to proteins of apparent molecular weights of approximately 24,000 and 14,000 daltons. This chromatographic step affords a ten-to 12-fold purification with a combined recovery of greater than 85%. Unlike brain or pituitary fibroblast growth factor, EDGF activity is destroyed by dithiothreitol or periodic acid. EDGF is not a somatomedin since it exhibits no detectable sulfation activity in a porcine cartilage assay. EDGF is not inhibited by antiserum to epidermal growth factor and is capable of stimulating DNA synthesis in a 3T3 variant cell line that is nonresponsive to and lacks receptors for epidermal growth factor. The majority of EDGF activity does not behave like the platelet-derived growth factor during ion exchange chromatography. Antisera prepared in rabbits and in mice to human platelet-derived growth factor has little effect on bivine or human EDGF activity. These biochemical and immunological properties of EDGF indicate that it is distinct from several other well-characterized polypeptide growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号