首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to determine the distribution of monocarboxylate transporter (MCT) subtypes 1-4 in the various structures of the rat eye by using a combination of conventional and real-time RT-PCR, immunoblotting, and immunohistochemistry. Retinal samples expressed mRNAs encoding all four MCTs. MCT1 immunoreactivity was observed in photoreceptor inner segments, Müller cells, retinal capillaries, and the two plexiform layers. MCT2 labeling was concentrated in the inner and outer plexiform layers. MCT4 immunolabeling was present only in the inner retina, particularly in putative Müller cells, and the plexiform layers. No MCT3 labeling could be observed. The retinal pigment epithelium (RPE)/choroid expressed high levels of MCT1 and MCT3 mRNAs but lower levels of MCT2 and MCT4 mRNAs. MCT1 was localized to the apical and MCT3 to the basal membrane of the RPE, whereas MCT2 staining was faint. Although MCT1-MCT4 mRNAs were all detectable in iris and ciliary body samples, only MCT1 and MCT2 proteins were expressed. These were present in the iris epithelium and the nonpigmented epithelium of the ciliary processes. MCT4 was localized to the smooth muscle lining of large vessels in the iris-ciliary body and choroid. In the cornea, MCT1 and MCT2 mRNAs and proteins were detectable in the epithelium and endothelium, whereas evidence was found for the presence of MCT4 and, to a lesser extent, MCT1 in the lens epithelium. The unique distribution of MCT subtypes in the eye is indicative of the pivotal role that these transporters play in the maintenance of ocular function. retina; eye; immunohistochemistry; polymerase chain reaction  相似文献   

2.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

3.
The renal medullary thick ascending limb (mTAL) of the Dahl salt-sensitive (SS) rat is the site of enhanced NaCl reabsorption and excess superoxide production. In the present studies we isolated mitochondria from mTAL of SS and salt-resistant control strain SS.13(BN) rats on 0.4 and 8% salt diet for 7 days and performed a proteomic analysis. Purity of mTAL and mitochondria isolations exceeded 93.6 and 55%, respectively. Using LC/MS spectral analysis techniques we identified 96 mitochondrial proteins in four biological mTAL mitochondria samples, run in duplicate, as defined by proteins with a false discovery rate <5% and scan count ≥2. Seven of these 96 proteins, including IDH2, ACADM, SCOT, Hsp60, ATPA, EFTu, and VDAC2 were differentially expressed between the two rat strains. Oxygen consumption and high-resolution respirometry analyses showed that mTAL cells and the mitochondria in the outer medulla of SS rats fed high-salt diet exhibited lower rates of oxygen utilization compared with those from SS.13(BN) rats. These studies advance the conventional proteomic paradigm of focusing exclusively upon whole tissue homogenates to a focus upon a single cell type and specific subcellular organelle. The results reveal the importance of a largely unexplored role for deficiencies of mTAL mitochondrial metabolism and oxygen utilization in salt-induced hypertension and renal medullary oxidative stress.  相似文献   

4.
We have recently proved the expression and localization of seven monocarboxylate transporters (MCT1, MCT2, MCT3, MCT4, MCT5, MCT7, and MCT8) in the rat adrenal gland. So far, there are no data reporting possible regulation of any MCT isoform in the adrenal gland. Pectin is a soluble dietary fiber that is known to exert a hypocholesterolemic effect and increases the short chain fatty acids production in the large intestine. This work aimed to study the effect of pectin feeding on the expression of MCTs (MCT1–MCT5, MCT7, and MCT8) and their cellular distribution in rat adrenal gland. Western blotting demonstrated significant increase in the expression levels of MCT1, MCT2, MCT4, MCT5, and MCT7 in pectin-fed rats in comparison with the controls. Immunohistochemistry revealed extended distribution and distinctive increase in the immunoreactivities of MCT1, MCT2, MCT4, MCT5, and MCT7 in the adrenal cortical zones, besides the increase in the immunoreactive intensity of MCT5 and MCT7 in the adrenal medulla of pectin-fed versus control rats. Interestingly, zona glomerulosa which did not show any reactivity for MCT1 or MCT2 in controls, exhibited marked immunopositivities for both MCT1 and MCT2 in pectin-fed rats. MCT3 and MCT8, however, did not show significant changes in their expression levels between pectin-fed and control rats. Our data is the first to describe the up regulation of various MCTs in rat adrenal gland under the influence of pectin feeding. This up regulation might be a compensatory response to the hypocholesterolemic effect of pectin in order to maximize the intracellular availability of acetate. This article suggests that monocarboxylate transporters have an important physiological role in the regulation of adrenal hormones as well as in cholesterol homeostasis.  相似文献   

5.
Ultrastructure of the thick ascending limb of Henle in the rat kidney   总被引:2,自引:0,他引:2  
The thick ascending limb of Henle (TAL) in the rat until recently has been considered a morphologically homogeneous structure despite physiologic and biochemical evidence to the contrary. The present study was designed to examine the ultrastructural characteristics of the TAL in the inner cortex and the outer and inner stripes of the outer medulla using qualitative and quantitative transmission electron microscopy. Kidneys of male Sprague-Dawley rats were preserved by in vivo perfusion with glutaraldehyde for light and electron microscopy. The peritubular diameter and cell height were determined by direct measurements on tubule cross sections. Morphometric analyses were performed on montages of tubule cross sections. The peritubular diameter of the TAL was similar in the three regions under investigation, but the TAL cells were taller in the inner stripe than in the inner cortex and outer stripe. Morphometry revealed significant differences between the three regions with respect to the mean tubular cross-sectional area (AT), the surface density (SV), and the surface area per mm of tubule (ST) of apical and basolateral plasma membranes, and the volume density (VV) of mitochondria. The major morphologic division appeared to be between the inner stripe segment and the remainder of the TAL. These findings document the presence of significant morphologic heterogeneity of the rat TAL.  相似文献   

6.
The cytochemical distribution of nonspecific membrane ATPase activity in the epithelial membranes of the thin limbs of the loops of Henle of rat nephrons was studied at the ultrastructural level. Membrane ATPase activity was localized in the luminal, lateral, and (to a lesser extent) basal membranes of only the outer medullary segment of the thin descending limbs of long nephrons (Type II epithelium). The reaction product was lacking in the thin limb of short nephrons (Type I epithelium) as well as in the inner medullary descending (Type III epithelium) and ascending (Type IV epithelium) segments of the thin limbs of long nephrons. These data reinforce the concept of thin limb heterogeneity and may indicate a specialized role for the outer medullary segment of thin descending limbs of long nephrons in the concentrating mechanism.  相似文献   

7.
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++-sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.  相似文献   

8.
Fluorescence and electrophysiological methods were used to determine the effects of intracellular pH (pHi) on cellular NH4+/K+ transport pathways in the renal medullary thick ascending limb of Henle (MTAL) from CD1 mice. Studies were performed in suspensions of MTAL tubules (S-MTAL) and in isolated, perfused MTAL segments (IP-MTAL). Steady-state pHi measured using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) averaged 7.42 +/- 0.02 (mean +/- SE) in S-MTAL and 7.26 +/- 0.04 in IP-MTAL. The intrinsic cellular buffering power of MTAL cells was 29.7 +/- 2.4 mM/pHi unit at pHi values between 7.0 and 7.6, but below a pHi of 7.0 the intrinsic buffering power increased linearly to approximately 50 mM/pHi unit at pHi 6.5. In IP-MTAL, NH4+ entered cells across apical membranes via both Ba(2+)-sensitive pathway and furosemide-sensitive Na+:K+(NH4+):2Cl- cotransport mechanisms. The K0.5 and maximal rate for combined apical entry were 0.5 mM and 83.3 mM/min, respectively. The apical Ba(2+)-sensitive cell conductance in IP-MTAL (Gc), which reflects the apical K+ conductance, was sensitive to pHi over a pHi range of 6.0-7.4 with an apparent K0.5 at pHi approximately 6.7. The rate of cellular NH4+ influx in IP-MTAL due to the apical Ba(2+)-sensitive NH4+ transport pathway was sensitive to reduction in cytosolic pH whether pHi was changed by acidifying the basolateral medium or by inhibition of the apical Na+:H+ exchanger with amiloride at a constant pHo of 7.4. The pHi sensitivities of Gc and apical, Ba(2+)-sensitive NH4+ influx in IP-MTAL were virtually identical. The pHi sensitivity of the Ba(2+)-sensitive NH4+ influx in S-MTAL when exposed to (apical+basolateral) NH4Cl was greater than that observed in IP-MTAL where NH4Cl was added only to apical membranes, suggesting an additional effect of intracellular NH4+/NH3 on NH4+ influx. NH4+ entry via apical Na+:K+ (NH4+):2Cl- cotransport in IP-MTAL was somewhat more sensitive to reductions in pHi than the Ba(2+)-sensitive NH4+ influx pathway; NH4+ entry decreased by 52.9 +/- 13.4% on reducing pHi from 7.31 +/- 0.17 to 6.82 +/- 0.14. These results suggest that pHi may provide a negative feedback signal for regulating the rate of apical NH4+ entry, and hence transcellular NH4+ transport, in the MTAL. A model incorporating these results is proposed which illustrates the role of both pHi and basolateral/intracellular NH4+/NH3 in regulating the rate of transcellular N H4+ transport in the MTAL.  相似文献   

9.
10.
11.
In this study, we have established new syncytiotrophoblast cell lines (TR-TBTs) from the recently developed transgenic rat harboring temperature-sensitive simian virus 40 large T-antigen gene (Tg-rat). Four conditionally immortalized syncytiotrophoblast cell lines (TR-TBT 18d-1 approximately 4) were obtained from pregnant Tg-rats at gestational day 18. These cell lines had a syncytium-like morphology, could be prepared as monolayers, expressed cytokeratins and rat syncytiotrophoblast markers, and exhibited apical or basal GLUT1 localizations and apical GLUT3 localizations. TR-TBTs express large T-antigen and grow well at 33 degrees C with a doubling time of about 30 h. TR-TBTs have processes for the uptake of dehydroepiandrosteron-3-sulfate (DHEAS) and these are predominantly located on the basal side, and this is the first report of an in vitro model of blood placental barrier (BPB) able to incorporate DHEAS. Therefore, TR-TBTs are an appropriate in vitro model for investigating carrier-mediated transport functions at the BPB. Moreover, TR-TBTs express betaine/GABA transporter (GAT-2/BGT-1), concentrative nucleoside transporter 2 (CNT2), equilibrative nucleoside transporter 1 (ENT1), and ENT2 and the expression of these transporters has been reported in blood-brain barrier (BBB). Thus, the expression patterns of nucleoside and neurotransmitter transporters examined are quite similar in both the BPB and BBB.  相似文献   

12.
Summary Intraacinar distribution of succinate dehydrogenase (SDH), malate dehydrogenase (MDH), NADP-dependent isocitrate dehydrogenase (IDH), glutamate dehydrogenase (GluDH), lactate dehydrogenase (LDH) and NADH-tetrazolium dehydrogenase (TR) was studied in rat liver cryostat sections by multipositional microphotometric activity determinations. By statistical evaluation, activity of individual enzymes could be related to the acinar topography. Activity was evaluated with regard to distance of measuring position either from afferent (portal) or efferent (hepatic) vessels. Two independent distribution curves were obtained for each enzyme. Acinar distribution of all the enzymes studied followed sigmoid courses with maximal activity of SDH, MDH and LDH in zone 1 (periportal) and GluDH, IDH, TR in zone 3 (pericentral). For all enzymes, maximum activity gradients were confined to zone 2 of the acinus. Data were also evaluated as ratios of activities in zone 1 and zone 3. The following ratios zone 1/zone 3 were obtained: SDH=1.9, MDH=1.7, IDH=0.5, GluDH=0.5, LDH=1.3 and TR=0.6.  相似文献   

13.
14.
Previous work from our laboratory has demonstrated that the inner medullary collecting duct (IMCD) expresses a large amount of nitric oxide synthase (NOS) activity. The present study was designed to characterize the transport of NOS substrate, L-arginine, in a suspension of bulk-isolated IMCD cells from the Sprague-Dawley rat kidney. Biochemical transport studies demonstrated an L-arginine transport system in IMCD cells that was saturable and Na(+) independent (n = 6). L-Arginine uptake by IMCD cells was inhibited by the cationic amino acids L-lysine, L-homoarginine, and L-ornithine (10 mmol/l each) and unaffected by the neutral amino acids L-leucine, L-serine, and L-glutamine. Both L-ornithine (n = 6) and L-lysine (n = 6) inhibited NOS enzymatic activity in a dose-dependent manner in IMCD cells, supporting the important role of L-arginine transport for NO production by this tubular segment. Furthermore, RT-PCR of microdissected IMCD confirmed the presence of cationic amino acid transporter CAT1 mRNA, whereas CAT2A, CAT2B, and CAT3 were not detected. These results indicate that L-arginine uptake by IMCD cells occurs via system y(+), is encoded by CAT1, and may participate in the regulation of NO production in this renal segment.  相似文献   

15.
The thin limbs of the loop of Henle   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
Modelling studies have played an important role in research on the mechanism of urine concentration and dilution by the medulla of the kidney ever since Hargitay and Kuhn (1951,Z. Elektrochem. 55, 539–558) first proposed that the parallel tubular structures in the kidney medulla must function as a “countercurrent multiplication” system. Present-day models, in keeping with our considerably improved understanding of most aspects of medullary structure-function relationships, have evolved into rather sophisticated systems of parallel tubes. In spite of this increasing complexity, it has remained the case that “model medullas” do not concentrate as well as the real kidney, especially in the inner medulla where only passive, diffusional transport occurs. Inasmuch as these models take into account the majority of contemporary ideas making up our global hypothesis about the functioning of this system, their failure to behave physiologically indicates that our understanding remains incomplete. The purpose of the present modelling study was to evaluate the implications of some recent measurements showing that permeabilities of NaCl (P s ) and urea (P u ) vary along the length of the descending thin limbs of Henle (Imaiet al., 1988,Am. J. Physiol. 254, F323–F328), rather than being constant throughout this segment as had been assumed earlier. It was hoped that these newly measured values might explain, by a passive, diffusional process, the net solute addition at the bend of Henle’s loop observed under some circumstances and heretofore attributed (though without any supporting experimental evidence) to active transport into the descending limb. The results of the present study show that whereas incorporation of the new values forP s andP u in the descending limbs of short nephrons does indeed improve the concentrating power of the model, these new values are nonetheless not sufficient to allow the model to build an osmolarity gradient that increases all the way through the inner medulla. This failing, which is common to virtually all modelling studies to date using measured values from rat kidneys, probably points to a key role for preferential exchange supposed by some to exist among certain tubule segments within vascular bundles in species whose kidneys have the highest concentrating power.  相似文献   

18.
Antibodies against human erythrocyte glucose transporters (GLUT-1) were used to determine if the transporters of embryonic and adult rat hearts have similar reactivity. On the basis of immunoblotting, these antibodies react more strongly with embryonic transporters than with adult ones. To determine if this phenomenon may be correlated with changes in the expression of transporter types during development, RNA isolated from either the embryonic or the adult rat heart was amplified by polymerase chain reaction (PCR) to identify the transporter species. Both GLUT-1 and GLUT-4 fragments were obtained among the PCR products. They were used for Northern blot analysis. The results indicate that the embryonic heart is rich in GLUT-1 mRNA; whereas the adult heart contains predominantly GLUT-4 mRNA. Thus, it appears that the major type of glucose transporter in rat heart switches from GLUT-1 to GLUT-4 during development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号