首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of blood contamination on the proteome of cerebrospinal fluid   总被引:1,自引:0,他引:1  
Human cerebrospinal fluid (CSF) is in direct contact with the brain extracellular space. Beside the secretion of CSF by the choroid plexus the fluid also derives directly from the brain by the ependymal lining of the ventricular system and the glial membrane and from blood vessels in the arachnoid. Therefore, biochemical change in the brain may be reflected in the CSF. CSF is a potential source of protein molecular indices of central nervous system function and pathology. However, various amounts of blood contamination in CSF may arise during sample acquisition. The concentration of protein in the CSF is only 0.2 to 0.5% that of blood. Minor contamination of CSF with blood during collection of the fluid may dramatically alter the protein profile confounding the identification of potential biomarkers. We have analyzed CSF and CSF spiked with increasing amounts of whole blood using proteomic techniques. We detected at least four blood specific highly abundant proteins: hemoglobin, catalase, peroxiredoxin and carbonic anhydrase I. These proteins can be used as blood contamination markers for proteomic analysis of CSF. Proteins in blood contaminated CSF samples were less stable compared to neat CSF at 37 degrees C suggesting that blood borne protease may induce protein degradation in CSF during sample acquisition. This analysis was aimed at identification of proteins found primarily in CSF, those found primarily in blood and assessment of the impact of blood contamination on those proteins found in both fluids.  相似文献   

2.
Recent studies have evaluated proper acquisition and storage procedures for the use of serum or plasma for mass spectrometry (MS)-based proteomics. The present study examines the proteome stability of human cerebrospinal fluid (CSF) over time at 23°C (room temperature) and 4°C using surface-enhanced laser desorption/ionization time-of-flight MS. Data analysis revealed that statistically significant differences in protein profiles are apparent within 4 h at 23°C and between 6 and 8 h at 4°C. Inclusion of protease and phosphatase inhibitor cocktails into the CSF samples failed to significantly reduce proteome alterations over time. We conclude that MS-based proteomic analysis of CSF requires careful assessment of sample collection procedures for rapid and optimal sample acquisition and storage.  相似文献   

3.
Kim MS  Gu BH  Song S  Choi BC  Cha DH  Baek KH 《Molecular bioSystems》2011,7(5):1430-1440
Recurrent pregnancy loss (RPL) is defined as at least three pregnancy losses in series prior to the 20-28 weeks of pregnancy. There are several etiological factors associated with immunology, anatomy, endocrinology, genetic, infection, chromosomal abnormalities, and environmental factors contributing to the condition. The aim of this study was to identify RPL associated factors in human blood using proteomics. Since it is difficult to obtain tissues or follicular fluids, we used blood samples from normal and RPL patients to conduct a comparative proteomic study. Three RPL blood samples and one cocktailed blood sample from 3 normal women were used. We performed 2-DE and selected spots were analyzed with MALDI-TOF/MS. In the three RPL blood samples, 2-DE analysis revealed 549, 563 and 533 spots to be differentially expressed, respectively. Through a comparative analysis between the control and RPL, 21 spots were shown to be differentially expressed. Of these, 5 proteins were confirmed by Western blot analysis. One of these proteins, ITI-H4 (inter-α trypsin inhibitor-heavy chain 4), was weakly expressed at a molecular weight of 120 kDa, but was highly expressed at a modified molecular weight of 36 kDa in RPL patients. These findings suggest that ITI-H4 expression may be used as a biomarker, which could facilitate the development of novel diagnostic and therapeutic tools.  相似文献   

4.
Knowledge of the protein and peptide content in a tissue or a body fluid is vital in many areas of medical and biomedical sciences. Information from proteomic and peptidomic studies may reveal alterations in expression due to, e.g., a disease and facilitate the understanding of the pathophysiology and the identification of biological markers. In this minireview, we discuss miniaturized proteomic and peptidomic approaches that have been applied in our laboratory in order to investigate the protein and peptide contents of body fluids (such as plasma, cerebrospinal and amniotic fluid), as well as extracted tissues. The methods involve miniaturized liquid separation, i.e., capillary liquid chromatography and capillary electrophoresis, combined with high resolution mass spectrometry (MS), i.e., Fourier transform ion cyclotron resonance MS. These approaches provide the opportunity to analyze samples of small volumes with high throughput, high sensitivity, good dynamic range and minimal sample handling. Also, the experiments are relatively easy to automate.  相似文献   

5.
The proteomics work reported by Smith et al. represents a giant step forward in characterizing the cerebrospinal fluid (CSF) proteome in mouse models of human diseases. Whereas prior studies were limited to analysis of CSF pools, Smith et al. (Proteomics 2014, 14, 1102–1106) base their conclusions on data derived from individual mice, thereby capturing a fuller range of the biological diversity present. These results underscore how far proteomics has come in the past few years, developing into a modern tool with the capacity to remove bottlenecks in the study of neuropsychiatric diseases. Past efforts with mass spectrometry (MS) have been hampered by limitations in access to CSF samples, and small volumes when available. These barriers have been overcome with newer MS platforms and advances in sample preparation. We are far closer than before to producing the production of clinically useful proteomic data for biomarker discovery and for deriving insights into pathogenesis that can lead to more effective treatments for many diseases.  相似文献   

6.
Fifty-nine samples of barley and barley products were analysed for 18 trichothecene mycotoxins by a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (detection limits 0.062-0.70 μg/kg) after sample extract clean-up on MycoSep®-226 columns. The samples were collected in 2009 from barley processing facilities (mills and malt houses) and at wholesale and retail stage from the Bavarian market. The predominant toxins were T-2 toxin (T-2), HT-2 toxin (HT-2) and deoxynivalenol (DON). For all samples, the mean levels of T-2 and HT-2 were 3.0 μg/kg and 6.8 μg/kg with rates of contamination of 63% and 71%, respectively. The maximum values were 40 μg/kg for T-2 and 47 μg/kg for HT-2. The rate of contamination with DON was high (95%) with a low mean level of 23 μg/kg. The DON levels ranged between 3.4 to 420 μg/kg. For T-2 tetraol, a mean level of 9.2 μg/kg and a maximum level of 51 μg/kg with a rate of contamination of 71% were determined. NIV was detected in 69% of the samples with a mean level of 11 μg/kg and a maximum level of 72 μg/kg. Other type A and B trichothecenes were detected only in traces. Type D trichothecenes, fusarenon-X, verrucarol and 4,15-diacetylverrucarol were not detected in any sample. Winter barley and malting barley were the most contaminated groups of all samples in this study. In malting barley, the highest levels of contamination with type A trichothecenes were found. In contrast, winter barley showed the highest contamination with type B trichothecenes. The lowest mycotoxin concentrations were found in de-hulled and naked barley and in pearl barley.  相似文献   

7.
High throughput proteome screening for biomarker detection   总被引:6,自引:0,他引:6  
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Current methods, while highly developed and powerful, are falling short of their goal of routinely analyzing whole proteomes mainly because the wealth of proteomic information accumulated from prior studies is not used for the planning or interpretation of present experiments. The consequence of this situation is that in every proteomic experiment the proteome is rediscovered. In this report we describe an approach for quantitative proteomics that builds on the extensive prior knowledge of proteomes and a platform for the implementation of the method. The method is based on the selection and chemical synthesis of isotopically labeled reference peptides that uniquely identify a particular protein and the addition of a panel of such peptides to the sample mixture consisting of tryptic peptides from the proteome in question. The platform consists of a peptide separation module for the generation of ordered peptide arrays from the combined peptide sample on the sample plate of a MALDI mass spectrometer, a high throughput MALDI-TOF/TOF mass spectrometer, and a suite of software tools for the selective analysis of the targeted peptides and the interpretation of the results. Applying the method to the analysis of the human blood serum proteome we demonstrate the feasibility of using mass spectrometry-based proteomics as a high throughput screening technology for the detection and quantification of targeted proteins in a complex system.  相似文献   

8.
Zhou H  Ning Z  Wang F  Seebun D  Figeys D 《The FEBS journal》2011,278(20):3796-3806
Proteomic analysis requires the combination of an extensive suite of technologies including protein processing and separation, micro-flow HPLC, MS and bioinformatics. Although proteomic technologies are still in flux, approaches that bypass gel electrophoresis (gel-free approaches) are dominating the field of proteomics. Along with the development of gel-free proteomics, came the development of devices for the processing of proteomic samples termed proteomic reactors. These microfluidic devices provide rapid, robust and efficient pre-MS sample procession by performing protein sample preparation/concentration, digestion and peptide fractionation. The proteomic reactor has advanced in two major directions: immobilized enzyme reactor and ion exchange-based proteomic reactor. This review summarizes the technical developments and biological applications of the proteomic reactor over the last decade.  相似文献   

9.
Chen RL  Sage EA  Dunn MJ  Wait R  Preston JE 《Proteomics》2006,6(10):3170-3175
Biomarkers for neurodegenerative disorders are potentially present in cerebrospinal fluid (CSF) and can be detected using proteomic technologies. Since CSF is high in salt and low in protein, its study by proteomic methods requires appropriate sample preparation. In this study, we applied four different sample treatments to the same ovine CSF sample. Precipitation with acetone or using a 2-D Clean-Up Kit (GE Healthcare BioSciences, Little Chalfont, UK) preserved more proteins, and produced more gel spots than spin columns from Sigma and Bio-Rad. A 53-kDa spot, identified by MS/MS as transthyretin (TTR) tetramer, was not detected in samples treated with the 2-D Clean-Up Kit, though it was always present on all gels prepared using the other three methods. Western immunoblotting confirmed the low recovery of tetrameric TTR by the 2-D Clean-Up Kit and showed that the tetrameric form of TTR predominated in ovine but not in rat CSF. In one ovine CSF sample haemoglobin was found, indicating blood contamination. We conclude that acetone precipitation is a simple and efficient way to prepare ovine CSF for 2-DE. The use of the 2-D Clean-Up Kit leads to the disappearance of tetrameric TTR only from ovine CSF proteome.  相似文献   

10.
In obstetrics, premature rupture of the membranes (PROM) is a frequent observation which is responsible for many premature deliveries. PROM is also associated with an increased risk of fetal and maternal infections. Early diagnosis is mandatory in order to decrease such complications. Despite that current biological tests allowing the diagnosis of PROM are both sensitive and specific, contamination of the samples by maternal blood can induce false positive results. Therefore, in order to identify new potential markers of PROM (present only in amniotic blood, and absent in maternal blood), proteomic studies were undertaken on samples collected from six women at terms (pairs of maternal plasma and amniotic fluid) as well as on four samples of amniotic fluid collected from other women at the 17(th) week of gestation. All samples (N = 16) were analyzed by two-dimensional (2-D) high-resolution electrophoresis, followed by sensitive silver staining. The gel images were studied using bioinformatic tools. Analyses were focused on regions corresponding to pI between 4.5 and 7 and to molecular masses between 20 and 50 kDa. In this area, 646 +/- 113 spots were detected, and 27 spots appeared to be present on the gels of amniotic fluid, but were absent on those of maternal plasma. Nine out of these 27 spots were also observed on the gels of the four samples of amniotic fluids collected at the 17(th) week of pregnancy. Five of these 9 spots were unambiguously detected on preparative 2-D gels stained by Coomassie blue, and were identified by mass spectrometry analyses. Three spots corresponded to fragments of plasma proteins, and 2 appeared to be fragments of proteins not known to be present in plasma. These 2 proteins were agrin (SWISS-PROT: O00468) and perlecan (SWISS-PROT: P98160). Our results show that proteomics is a valuable approach to identify new potential biological markers for future PROM diagnosis.  相似文献   

11.
The superior sensitivity of current mass spectrometers makes them prone to contamination issues, which can have deleterious effects on sample analysis. Here, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate (marketed under the name Tinuvin 770) is identified as a major contaminant in applications using liquid chromatography coupled with mass spectrometry (LC-MS). Tinuvin 770 is often added to laboratory and medical plastics as a UV stabilizer. One particular lot of microcentrifuge tubes was found to have an excess of this compound that would leach into samples and drastically interfere with LC-MS data acquisition. Further analysis found that Tinuvin 770 readily leached into polar and nonpolar solvents from the contaminated tube lot. Efforts to remove Tinuvin 770 from contaminated samples were unsuccessful. A prescreening method using MALDI-TOF MS is presented to prevent system contamination and sample loss.  相似文献   

12.
Various analytical techniques have been developed to determine nitrite and nitrate, oxidation metabolites of nitric oxide (NO), in biological samples. HPLC is a widely used method to quantify these two anions in plasma, serum, urine, saliva, cerebrospinal fluid, tissue extracts, and fetal fluids, as well as meats and cell culture medium. The detection principles include UV and VIS absorbance, electrochemistry, chemiluminescence, and fluorescence. UV or VIS absorbance and electrochemistry allow simultaneous detection of nitrite and nitrate but are vulnerable to the severe interference from chloride present in biological samples. Chemiluminescence and fluorescence detection improve the assay sensitivity and are unaffected by chloride but cannot be applied to a simultaneous analysis of nitrite and nitrate. The choice of a detection method largely depends on sample type and facility availability. The recently developed fluorometric HPLC method, which involves pre-column derivatization of nitrite with 2,3-diaminonaphthalene (DAN) and the enzymatic conversion of nitrate into nitrite, offers the advantages of easy sample preparation, simple derivatization, stable fluorescent derivatives, rapid analysis, high sensitivity and specificity, lack of interferences, and easy automation for determining nitrite and nitrate in all biological samples including cell culture medium. To ensure accurate analysis, care should be taken in sample collection, processing, and derivatization as well as preparation of reagent solutions and mobile phases, to prevent environmental contamination. HPLC methods provide a useful research tool for studying NO biochemistry, physiology and pharmacology.  相似文献   

13.
Exosomes are membranous vesicles released by cells in extracellular fluids: they have been found and analyzed in blood, urine, amniotic fluid, breast milk, seminal fluid, saliva and malignant effusions, besides conditioned media from different cell lines. Several recent papers show that exosome proteomes of different origin include both a common set of membrane and cytosolic proteins, and specific subsets of proteins, likely correlated to cell-type associated functions. This is particularly interesting in relation to their possible involvement in human diseases. The knowledge of exosome proteomics can help not only in understanding their biological roles but also in supplying new biomarkers to be searched for in patients' fluids. This review offers an overview of technical and analytical issues in exosome proteomics, and it highlights the significance of proteomic studies in terms of biological and clinical usefulness.  相似文献   

14.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein-protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

15.
Analysis of metabolites in biofluids by gas chromatography–mass spectrometry (GC–MS) after oximation and silylation is a key method in metabolomics. The GC–MS method was modified by a modified vial design and sample work-up procedure in order to make the method applicable to small volumes of cerebrospinal fluid (CSF), i.e. 10 μL, with similar coverage compared to the standard procedure using ≥100 μL of CSF. The data quality of the modified GC–MS method was assessed by analyzing a study sample set in an animal model for multiple sclerosis, including repetitively analysed quality control rat CSF samples. Automated normalization and intra- and inter-batch correction significantly improved the data quality with the majority of metabolites showing a relative standard deviation <20 %. The modified GC–MS method was successfully applied in rat model of multiple sclerosis where statistical analysis of 93 metabolites, of which 73 were (tentatively) identified, in 10 μL of rat CSF showed statistically significant differences in metabolite profiles of rats at the onset and peak of experimental autoimmune encephalomyelitis compared to rats in the control group. The modified GC–MS method presented proved to be a valid and valuable metabolomics method when only limited sample volumes are available.  相似文献   

16.
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000-5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273-283, FIBA 5-16, and LBN 306-313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens.  相似文献   

17.
We report the characterization of two methods for the analysis of N-acetyl-aspartyl-glutamate (NAAG) in biological fluids. In the first method, NAAG concentrations were calculated based on differences between glutamate concentrations before and after NAAG hydrolysis with exogenous glutamate carboxypeptidase II (GCP II) using high-performance liquid chromatography (HPLC) followed by fluorescence detection. In the second method, NAAG levels were quantified directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analyses of NAAG levels in human cerebrospinal fluid samples using either method gave similar results within experimental error, confirming the validity of the two independent measurements. These methods will be useful in future clinical trials to assess drug-induced GCP II inhibition in biological matrices.  相似文献   

18.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein–protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

19.
The evidence on the mechanisms underlying schizophrenia seems to support a series of divergent possibilities that may play a contributory role in the disease pathogenesis. Hypotheses regarding disease mechanisms range from structural and neurodevelopmental abnormalities to neurotransmitter deficits and genetic predisposition. Nevertheless, little progress has been made in the field of schizophrenia with respect to the key pathophysiological processes, and this is a fundamental barrier to identifying or predicting the therapeutic value of novel drug targets. All multi-omics approaches, including proteomics, would be perfectly suited to such a complex disease as a means of tackling the widening chasm between the aforementioned hypotheses. Proteomic studies have been performed in a variety of tissues and biological fluids, from post-mortem CNS tissue to cerebrospinal fluid and blood, and in recently generated mutant animal models with schizophrenia-like phenotypes. In this review, we present an overview of several proteomic studies in the field of schizophrenia research and discuss how proteomics could assist with identifying schizophrenia markers more efficiently, covering both clinical and basic research.  相似文献   

20.
The aims of this study were to demonstrate the feasibility of centrally collecting and processing high-quality cerebrospinal fluid (CSF) samples for proteomic studies within a multi-center consortium and to identify putative biomarkers for medulloblastoma in CSF. We used 2-DE to investigate the CSF proteome from 33 children with medulloblastoma and compared it against the CSF proteome from 25 age-matched controls. Protein spots were subsequently identified by a combination of in-gel tryptic digestion and MALDI-TOF TOF MS analysis. On average, 160 protein spots were detected by 2-DE and 76 protein spots corresponding to 25 unique proteins were identified using MALDI-TOF. Levels of prostaglandin D2 synthase (PGD2S) were found to be six-fold decreased in the tumor samples versus control samples (p<0.00001). These data were further validated using ELISA. Close examination of PGD2S spots revealed the presence of complex sialylated carbohydrates at residues Asn(78) and Asn(87) . Total PGD2S levels are reduced six-fold in the CSF of children with medulloblastoma most likely representing a host response to the presence of the tumor. In addition, our results demonstrate the feasibility of performing proteomic studies on CSF samples collected from patients at multiple institutions within the consortium setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号