首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes.  相似文献   

2.
With muscle wasting, caspase-3 activation and the ubiquitin-proteasome system act synergistically to increase the degradation of muscle proteins. Whether proteasome activity is also elevated in response to catabolic conditions is unknown. We find that caspase-3 increases proteasome activity in myotubes but not in myoblasts. This difference is related to the cleavage of specific 19 S proteasome subunits. In mouse muscle or myotubes, caspase-3 cleaves Rpt2 and Rpt6 increasing proteasome activity. In myoblasts, caspase-3 cleaves Rpt5 to decrease proteasome activity. To confirm the caspase-3 dependence, caspase-3 cleavage sites in Rpt2, Rpt6, or Rpt5 were mutated. This prevented the cleavage of these subunits by caspase-3 as well as the changes in proteasome activity. During differentiation of myoblasts to myotubes, there is an obligatory, transient increase in caspase-3 activity, accompanied by a corresponding increase in proteasome activity and cleavage of Rpt2 and Rpt6. Therefore, differentiation changes the proteasome type from sensitivity of Rpt5 to caspase-3 in myoblasts to sensitivity of Rpt2 and Rpt6 in myotubes. This novel mechanism identifies a feed-forward amplification that augments muscle proteolysis in catabolic conditions. Indeed, we found that in mice with a muscle wasting condition, chronic kidney disease, there was cleavage of subunits Rpt2 and Rpt6 and stimulation of proteasome activity.  相似文献   

3.
4.
5.
1. The ubiquitin–proteasome pathway is involved in a variety of cellular functions in mammalian cells. The role of proteasome, however, in the course of cell differentiation is not well characterized. We hypothesized that proteasome activity might be essential during neuronal cell differentiation.2. To investigate the role of proteasome during neuronal differentiation, we made use of a murine neuroblastoma cell line (NBP2) that terminally differentiates into mature neurons upon elevation of the intracellular level of adenosine 3,5-cyclic monophosphate (cAMP). To monitor proteasome activity in NBP2 cells, we integrated an expression cassette~for a short-lived green fluorescent protein (d2EGFP) into these cells, which were designated as NBP2-PN25. When NBP2-PN25 cells were treated with a proteasome inhibitor, lactacystin or MG132, a dose-dependent increase in the constitutive levels of d2EGFP expression was detected.3. We also found that proteasome inhibition by lactacystin during the cAMP-induced differentiation of NBP2-PN25 cells triggered cell death. Both lactacystin and cAMP induction reduced the expression of mRNA for the differentiation-associated genes, such as N-mycand cyclin B1. While cAMP-inducing agents decreased the level of N-myc and cyclin B1 proteins, lactacystin increased the level of these proteins.4. Our data suggest that a reduced level of N-myc and cyclin B1 proteins is critical to commence differentiation, and this can be blocked by a proteasome inhibitor, leading to cell death. Concomitant induction of differentiation and proteasome inhibition, may, therefore, be potentially useful for the treatment of human neuroblastomas.  相似文献   

6.
Mitochondria are involved in the regulation of cell differentiation processes, but its function changes and molecular mechanisms are not yet clear. In this study, we found that mitochondrial functions changed obviously when K562 cells were induced to megakaryocytic differentiation by phorbol 12-myristate 13-acetate (PMA). During the cell differentiation, the reactive oxygen species (ROS) level was increased, mitochondrial membrane potential declined and respiratory chain complex IV activity was decreased. Treatment with specific inhibitor of mitochondrial respiratory chain complex IV led to a significant inhibition in mitochondrial membrane potential and reduction of PMA-induced cell differentiation. However, treatment with cyclosporine A, a stabilization reagent of mitochondrial membrane potential, did not improve the down-regulation of mitochondrial respiratory chain complex IV induced by PMA. Furthermore, we found that the level of the complex IV core subunit COX3 and mitochondrial transport-related proteins Tim9 and Tim10 were decreased during the differentiation of K562 cells induced by PMA, suggesting an important role of these factors in mitochondrial functional changes. Our results suggest that changes in mitochondrial functions are involved in the PMA-induced K562 cell differentiation process, and the maintenance of the steady-state of mitochondrial functions plays a critical role in the regulation of cell differentiation.  相似文献   

7.
目的:通过,IPA诱导K562细胞分化过程中干预细胞铁代谢探讨白血病细胞铁与细胞分化的关系及对EGR1mRNA表达的影响。方法:应用体外细胞培养技术通过细胞形态,细胞化学染色观察细胞生长分化情况;用FCM、RT—PCR等技术检细胞周期、细胞表面分化抗原CD33、CD14及EGR1mRNA的表达。结果:在,IPA诱导K562细胞分化过程中铁剥夺可明显抑制K562细胞生长,并可阻止,IPA诱导K562细胞分化,使K562细胞停止在S期。铁剥夺可降低,TPA诱导K562细胞分化过程中EGR1mRNA的表达。讨论:铁剥夺明显抑制K562细胞生长、阻止TPA诱导K562细胞分化,故铁剥夺剂(DFO)可能作为一种辅助抗癌药用于白血病的化疗,但由于它能阻止白血病细胞的分化,故不宜用于白血病的诱导分化治疗。铁剥夺使K562细胞分化过程中E—GR1mRNA表达降低可能参与了阻止TPA诱导K562细胞的分化过程。  相似文献   

8.
蛋白酶体抑制剂MG132诱导人白血病细胞K562和宫颈癌细胞HeLa凋亡,用3个不同浓度的蛋白酶体抑制剂MG132处理人白血病细胞K562和宫颈癌细胞HeLa,通过MTT检测、annexin Ⅴ/ PI 双染法、流式细胞术、酶标仪和Western 印迹分别检测MG132对K562细胞和HeLa细胞的生长效应、细胞凋亡率、细胞内活性氧(ROS)水平和caspase-3活性变化的影响.蛋白酶体抑制剂MG132诱导K562细胞凋亡明显,对HeLa细胞诱导凋亡不明显.结果表明,蛋白酶体抑制剂MG132特异性诱导不同肿瘤细胞凋亡的程度存在明显差异.  相似文献   

9.
Morozov  A. V.  Burov  A. V.  Astakhova  T. M.  Spasskaya  D. S.  Margulis  B. A.  Karpov  V. L. 《Molecular Biology》2019,53(4):571-579
Molecular Biology - The ubiquitin-proteasome system (UPS) performs proteolysis of most intracellular proteins. The key components of the UPS are the proteasomes, multi-subunit protein complexes,...  相似文献   

10.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the ferritin level 2-4- or 6-8-fold above that of the control, respectively. Treatment with the anti-human transferrin receptor antibody, OKT9 (which reduces the iron uptake by decreasing the number of transferrin receptors) lowers the ferritin level by approximately 70-80% with respect to the control. The fraction of total cell-associated 59Fe (given as a pulse via transferrin) that becomes ferritin bound is proportional to the actual ferritin level and is independent of the instantaneous amount of iron taken up. This has allowed us to establish a curve that correlates different levels of intracellular ferritin with corresponding percentages of incoming iron delivered to ferritin. Iron released from transferrin appears to distribute to ferritin according to a partition function; the entering load going into ferritin is set for a given ferritin level over a wide range of actual amounts of iron delivered.  相似文献   

11.
Regulation of K562 cell transferrin receptors by exogenous iron   总被引:1,自引:0,他引:1  
Single-cell analysis of K562 human erythroleukemia cells by flow cytometry was used to demonstrate the specific role of iron in regulating transferrin receptors (TfRs) and to establish that TfR expression does not necessarily correlate with growth rate. Exogenous iron concentration in culture was manipulated by supplementing the medium with sera having different iron concentrations over the range 0.6 to 5.4 micrograms/ml, by the addition of iron in the form of FeCl3, iron-saturated serum, or diferric transferrin, and by the addition of the iron chelator Desferal (desferrioxamine). TfR expression was negatively correlated with exogenous iron content: any treatment that reduced exogenous iron supply by at least 15% resulted in as much as a 1.8-fold increase in external receptors, detected as binding by both transferrin and monoclonal anti-TfR antibodies, and a 1.5-fold increase in the pool of internal receptors, as detected by anti-TfR antibody binding. None of these treatments altered growth rate, total cellular protein content, protein synthetic rate, cell cycle distribution or cell size. The rapid (12 hr) and reversible induction of internal and external receptors by Desferal was inhibited by cycloheximide and therefore may have resulted from de novo synthesis and not just mobilization of internal receptor pool to the cell surface. The correlation between growth rate and TfR expression previously observed in these and other cells must be secondary to cellular mechanisms that maintain intracellular iron pools by regulating synthesis, recycling, and cell surface expression of TfRs.  相似文献   

12.
我们发现,一种在RNA干扰实验中用作阴性对照的商业化siRNA具有明显的诱 导人慢性髓性白血病K562细胞系向红系方向分化的作用.它表现为K562细胞瞬时转 染该siRNA后,红系分化的特异表面标志CD235及ε 、γ 和β 珠蛋白的表达升高,GATA-2的表达降低,细胞增殖速度减慢,软琼脂克隆形成率降低,并且此 过程不伴随细胞凋亡. 而生物信息学分析显示,该siRNA序列与目前所有已知人类 基因均无明显同源性.研究结果提示,该siRNA不适于用作红系分化实验中的阴性 对照. siRNA的作用远比人们目前所知的要复杂得多,siRNA的脱靶效应应当引起 研究者的足够重视,在RNA干扰实验中阴性对照siRNA的选择会极大地影响对实验 结果的判读.  相似文献   

13.
K562细胞株增殖分化相关转录因子研究进展   总被引:1,自引:0,他引:1  
K562细胞作为体外研究白血病细胞增殖与分化的良好模型,其转录因子及作用机制研究是一关键的环节.本文就其中GATA、STAT、Sp家族等在K562细胞增殖分化中的作用及其相关进展作一综述.  相似文献   

14.
细胞周期的测量是细胞增殖动力学的研究基础。通过添加30μmol·L-1氯化高铁血红素(Hemin)诱导人慢性髓系白血病K562细胞红系分化,利用5-溴脱氧尿嘧啶核苷(BrdU)与7-AAD双染的方法检测Hemin诱导的K562红系分化细胞对细胞周期各期比例的影响,未诱导的K562细胞周期各期比例作为对照,检测发现Hemin诱导的K562红系分化细胞对其细胞周期相对值无明显影响。应用BrdU间隔染色结合流式细胞术的方法,通过分析BrdU间隔染色后BrdU阳性细胞群的动态变化规律,从而推算出K562红系分化细胞的倍增时间及细胞周期各期时长。根据测量结果发现,未诱导的K562细胞总倍增时间约为20 h,与通过生长曲线公式法计算倍增时间的结果相符,Hemin诱导的K562细胞的细胞周期倍增时长约为23 h。Hemin诱导的K562红系分化细胞较未诱导的K562细胞倍增时间与各期时长无明显差异。因此,Hemin诱导K562细胞红系分化对其细胞周期绝对值及相对值均无明显影响。  相似文献   

15.
探讨蛋白酶体抑制剂MG132 在诱导人白血病K562细胞凋亡过程中作用.分别以不同浓度的蛋白酶体抑制剂MG132 处理人白血病细胞K562,通过MTT法检测K562细胞活力,应用Annexin Ⅴ和PI 双染的细胞流式法检测K562细胞凋亡率和细胞内活性氧(ROS) 水平,应用酶标仪法检测K562细胞内Caspase- 3活性变化的情况.结果表明,随着MG132浓度的增加,各个指标与对照组比较差异均有显著性(P<0.05):K562细胞增殖明显受到抑制;细胞凋亡率明显增加,且当MG132浓度为900 nmol/L时,细胞凋亡率达36.5 %;同时,ROS 水平和caspase- 3活性明显升高.因次,蛋白酶体抑制剂MG132可显著抑制人白血病细胞K562增殖并促进其凋亡.  相似文献   

16.
The time-course of ELF-EMF application to biological systems is thought to be an important parameter determining the physiological outcome. This study investigated the effect of ELF-EMF on the differentiation of K562 cells at different time courses. ELF-EMF (50?Hz, 5?mT, 1?h) was applied at two different time-courses; first at the onset of hemin induction for 1?h, and second, daily 1?h for four days. While single exposure to ELF-EMF resulted in a decrease in differentiation, ELF-EMF applied everyday for 1?h caused an increase in differentiation. The effect of co-stressors, magnesium, and heat-shock was also determined and similar results were obtained. ELF-EMF increased ROS levels in K562 cells not treated with hemin, however did not change ROS levels of hemin treated cells indicating that ROS was not the cause. Overall, these results imply that the time-course of application is an important parameter determining the physiological response of cells to ELF-EMF.  相似文献   

17.
莪术醇诱导慢性粒细胞白血病K562细胞分化的研究   总被引:2,自引:0,他引:2  
林海  李晓辉 《现代生物医学进展》2007,7(11):1674-1676,F0003
目的:以人慢性粒细胞白血病细胞株K562细胞为对象,研究莪术醇(curcumenol)诱导K562细胞分化作用,并同莪术油做了比较研究。方法:通过测定细胞内酶变化判定莪术醇等诱导K562细胞的分化;用RT-PCR测定莪术醇等作用后K562细胞bcr/abl mRNA表达量的变化,同时测定莪术醇等对K562细胞微核影响,探讨诱导K562细胞的分化机理。结果:莪术醇能够诱导K562细胞向成熟分化,30μg/mL莪术醇作用72h后,Gimsa染色后可见K562细胞向终末细胞分化,出现杆状及分叶核细胞,细胞内酶学指标也呈分化表现;同时,莪术醇作用后bcr/abl融合基因的表达降低,K562细胞的微核率减少。结论:莪术醇对畸变的K562细胞染色体有作用,影响bcr/abl融合基因的表达,使K562细胞向成熟分化。  相似文献   

18.
19.
The stereoselective uptake of propranolol enantiomers was investigated by using the K562 and K562 adriamycin‐resistant cell line (K562/ADR) as a model. An enantioselective RP‐HPLC method was applied to determine the accumulation of propranolol (PPL) stereoisomers in K562 and K562/ADR cells. The concentration, time and temperature dependent studies showed that the accumulation of S‐(?)‐PPL was higher than R‐(+)‐PPL in K562 cells and uptake of R‐(+)‐PPL was significantly higher than that of S‐(?)‐PPL in K562/ADR cells. The results indicate the enantioselective accumulation of propranolol enantiomers in K562 and K562 / ADR cells. Chirality 25:361–364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
苦参碱是传统中药苦参的有效成分之一 .我们的前期实验表明 ,一定浓度的苦参碱可诱导人白血病K5 6 2细胞向成熟方向分化[1] .为深入研究其诱导分化的分子机制 ,本文以改良的DDRT PCR技术分析苦参碱作用K5 6 2细胞前后基因表达的差异 ,并利用生物信息学的方法对差异表达的基因进行比较与分析 .1 材料与方法1 1 材料1 1 1 细胞株 对照组K5 6 2细胞与苦参碱 (0 2g L)处理组K5 6 2细胞 .1 1 2 E .coliJM10 9工程菌 引自重庆医科大学附二院肝炎研究所 .1 1 3 主要试剂 苦参碱 (Mr =2 4 8 36 ,纯度99 9% ) :由日本大正制药公司惠…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号