首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.  相似文献   

2.
3.
Age-related macular degeneration (AMD) is characterized by the formation of drusen, extracellular deposits associated with atrophy of the retinal pigmented epithelium (RPE), disturbance of the transepithelial barrier and photoreceptor death. Amyloid-β (Aβ) is present in drusen but its role during AMD remains unknown. This study investigated the in vitro and in vivo effects of the oligomeric form of Aβ(1-42) – OAβ(1-42) – on RPE and found that it reduced mitochondrial redox potential and increased the production of reactive oxygen species, but did not induce apoptosis in RPE cell cultures. It also disorganized the actin cytoskeleton and halved occludin expression, markedly decreasing attachment capacity and abolishing the selectivity of RPE cell transepithelial permeability. Antioxidant pretreatment partially reversed the effects of OAβ(1-42) on mitochondrial redox potential and transepithelial permeability. Subretinally injected OAβ(1-42) induced pigmentation loss and RPE hypertrophy but not RPE cell apoptosis in C57BL/6 J mice. Rapid OAβ(1-42)-induced disorganization of cytoskeletal actin filaments was accompanied by decreased RPE expression of the tight junction proteins occludin and zonula occludens-1 and of the visual cycle proteins cellular retinaldehyde-binding protein and RPE65. The number of photoreceptors decreased by half within a few days. Our study pinpoints the role of Aβ in RPE alterations and dysfunctions leading to retinal degeneration and suggests that targeting Aβ may help develop selective methods for treating diseases involving retinal degeneration, such as AMD.  相似文献   

4.
Ginsenoside Rg1, cinnamic acid, and tanshinone IIA (RCT) are effective anticancer and antioxidant constituents of traditional Chinese herbal medicines of Ginseng, Xuanseng, and Danseng. The molecular mechanisms of anticancer effects of those constituents and their targets are unknown. Prohibitin, an inner membrane‐bound chaperone in mitochondrion involved in the regulation of cell growth, proliferation, differentiation, aging, and apoptosis, was chosen as a candidate molecular target because of its frequent up‐regulation in various cancer cells. We demonstrated that prohibitin existed in the filaments of the nuclear matrix of the MG‐63 cell and its expression was down‐regulated by the treatment of RCT using proteomic methodologies and Western blot analysis. Immunogold electro‐microscopy also found that prohibitin was localized on nuclear matrix intermediate filaments (NM‐IF) that had undergone restorational changes after RCT treatment. Prohibitin may function as a molecular chaperone that might interact with multiple oncogenes and tumor suppressor genes. We found that oncogenes c‐myc and c‐fos and tumor suppressor genes P53 and Rb were regulated by RCT as well and that these gene products co‐localized with prohibitin. Our study identified prohibitin as a molecular target of the effective anticancer constituents of Ginseng, Xuanseng, and Danseng that down‐regulated prohibitin in nuclear matrix, changed prohibtin trafficking from nucleolus to cytoplasm, and regulated several oncogenes and tumor suppressor genes. Prohibitin downregulation and cellular trafficking from nucleolus to cytoplasm indicated RCT protective roles in cancer prevention and treatment. J. Cell. Biochem. 108: 926–934, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Accumulation of indigestible lipofuscin and decreased mitochondrial energy production are characteristic age-related changes of post-mitotic retinal pigment epithelial (RPE) cells in the human eye. To test whether these two forms of age-related impairment have interdependent effects, we quantified the ATP-dependent phagocytic function of RPE cells loaded or not with the lipofuscin component A2E and inhibiting or not mitochondrial ATP synthesis either pharmacologically or genetically. We found that physiological levels of lysosomal A2E reduced mitochondrial membrane potential and inhibited oxidative phosphorylation (OXPHOS) of RPE cells. Furthermore, in media with physiological concentrations of glucose or pyruvate, A2E significantly inhibited phagocytosis. Antioxidants reversed these effects of A2E, suggesting that A2E damage is mediated by oxidative processes. Because mitochondrial mutations accumulate with aging, we generated novel genetic cellular models of RPE carrying mitochondrial DNA point mutations causing either moderate or severe mitochondrial dysfunction. Exploring these mutant RPE cells we found that, by itself, only the severe but not the moderate OXPHOS defect reduces phagocytosis. However, sub-toxic levels of lysosomal A2E are sufficient to reduce phagocytic activity of RPE with moderate OXPHOS defect and cause cell death of RPE with severe OXPHOS defect. Taken together, RPE cells rely on OXPHOS for phagocytosis when the carbon energy source is limited. Our results demonstrate that A2E accumulation exacerbates the effects of moderate mitochondrial dysfunction. They suggest that synergy of sub-toxic lysosomal and mitochondrial changes in RPE cells with age may cause RPE dysfunction that is known to contribute to human retinal diseases like age-related macular degeneration.  相似文献   

6.
Mitochondria are dynamic organelles that undergo fission and fusion. While they are essential for cellular metabolism, the effect of dysregulated mitochondrial dynamics on cellular metabolism is not fully understood. We previously found that transmembrane protein 135 (Tmem135) plays a role in the regulation of mitochondrial dynamics in mice. Mice homozygous for a Tmem135 mutation (Tmem135FUN025/FUN025) display accelerated aging and age-related disease pathologies in the retina including the retinal pigment epithelium (RPE). We also generated a transgenic mouse line globally overexpressing the Tmem135 gene (Tmem135 TG). In several tissues and cells that we studied such as the retina, heart, and fibroblast cells, we observed that the Tmem135 mutation causes elongated mitochondria, while overexpression of Tmem135 results in fragmented mitochondria. To investigate how abnormal mitochondrial dynamics affect metabolic signatures of tissues and cells, we identified metabolic changes in primary RPE cell cultures as well as heart, cerebellum, and hippocampus isolated from Tmem135FUN025/FUN025 mice (fusion > fission) and Tmem135 TG mice (fusion < fission) using nuclear magnetic resonance spectroscopy. Metabolomics analysis revealed a tissue-dependent response to Tmem135 alterations, whereby significant metabolic changes were observed in the heart of both Tmem135 mutant and TG mice as compared to wild-type, while negligible effects were observed in the cerebellum and hippocampus. We also observed changes in Tmem135FUN025/FUN025 and Tmem135 TG RPE cells associated with osmosis and glucose and phospholipid metabolism. We observed depletion of NAD+ in both Tmem135FUN025/FUN025 and Tmem135 TG RPE cells, indicating that imbalance in mitochondrial dynamics to both directions lowers the cellular NAD+ level. Metabolic changes identified in this study might be associated with imbalanced mitochondrial dynamics in heart tissue and RPE cells which can likely lead to functional abnormalities.Impact statementMitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells.  相似文献   

7.
Impairment of mitochondria function and cellular antioxidant systems are linked to aging and neurodegenerative diseases. In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment that contributes to age-related visual dysfunction. Here, we examined changes in mitochondrial function in human RPE cells and sensitivity to oxidative stress with increased chronological age. Primary RPE cells from young (9–20)-, mid-age (48–60)-, and >60 (62–76)-year-old donors were grown to confluency and examined by electron microscopy and flow cytometry using several mitochondrial functional assessment tools. Susceptibility of RPE cells to H2O2 toxicity was determined by lactate dehydrogenase and cytochrome c release, as well as propidium iodide staining. Reactive oxygen species, cytoplasmic Ca2+ [Ca2+]c, and mitochondrial Ca2+ [Ca2+]m levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate, fluo-3/AM, and Rhod-2/AM, respectively, adenosine triphosphate (ATP) levels were measured by a luciferin/luciferase-based assay and mitochondrial membrane potential (ΔΨm) estimated using 5,5′,6,6′-tetrachloro 1,1′3,3′-tetraethylbenzimid azolocarbocyanine iodide. Expression of mitochondrial and antioxidant genes was determined by real-time polymerase chain reaction. RPE cells show greater sensitivity to oxidative stress, reduction in expression of mitochondrial heat shock protein 70, uncoupling protein 2, and superoxide dismutase 3, and greater expression of superoxide dismutase 2 levels with increased chronological age. Changes in mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity were more prominent in samples obtained from >60 years old compared to mid-age and younger donors. These mitochondria abnormalities correlated with lower ATP levels, reduced ΔΨm, decreased [Ca2+]c, and increased sequestration of [Ca2+]m in cells with advanced aging. Our study provides evidence for mitochondrial decay, bioenergetic deficiency, weakened antioxidant defenses, and increased sensitivity of RPE cells to oxidative stress with advanced aging. Our findings suggest that with increased severity of mitochondrial decay and oxidative stress, RPE function may be altered in some individuals in a way that makes the retina more susceptible to age-related injury.  相似文献   

8.
In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5(-/-) RPE but not in neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants, grapes or marigold extract containing macular pigments lutein/zeaxanthin, was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5(-/-) mice. Acute generation of HNE adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of a physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet.  相似文献   

9.
Endoplasmic reticulum (ER) stress is linked to several pathological conditions including age-related macular degeneration. Excessive ER stress initiates cell death cascades which are mediated, in part, through mitochondrial dysfunction. Here, we identify αB crystallin as an important regulator of ER stress-induced cell death. Retinal pigment epithelial (RPE) cells from αB crystallin (-/-) mice, and human RPE cells transfected with αB crystallin siRNA, are more vulnerable to ER stress induced by tunicamycin. ER stress-mediated cell death is associated with increased levels of reactive oxygen species, depletion of glutathione in mitochondria, decreased superoxide dismutase activity, increased release of cytochrome c, and activation of caspases 3 and 4. The ER stress signaling inhibitors, salubrinal and 4-(2-aminoethyl) benzenesulfonyl fluoride, decrease mitochondrial damage and reduce RPE apoptosis induced by ER stress. Prolonged ER stress decreases levels of αB crystallin, thus exacerbating mitochondrial dysfunction. Overexpression of αB crystallin protects RPE cells from ER stress-induced apoptosis by attenuating increases in Bax, CHOP, mitochondrial permeability transition, and cleaved caspase 3. Thus, these data collectively demonstrate that αB crystallin provides critical protection of mitochondrial function during ER stress-induced RPE apoptosis.  相似文献   

10.
Vibrio cholerae produced‐Cholix toxin (Cholix) is a cytotoxin that ADP‐ribosylates eukaryotic elongation factor 2, inhibiting protein synthesis, and inducing apoptosis. Here, we identified prohibitin (PHB) 1 and 2 as novel Cholix‐interacting membrane proteins in immortalised human hepatocytes and HepG2 cells by Cholix immunoprecipitation assays. The expression level of PHB1 was decreased by Cholix after a 12hr incubation. Cholix‐induced poly (ADP‐ribose) polymerase (PARP) cleavage was significantly enhanced in PHB (PHB1 or PHB2) knockdown cells. In contrast, transiently overexpressed PHB in hepatocytes attenuated Cholix‐induced Bax/Bak conformational changes and PARP cleavage. In addition, Cholix‐induced reactive oxygen species production and accumulation of fragmented mitochondria were enhanced in PHB‐knockdown cells. Furthermore, Cholix induced activation of Rho‐associated coiled coil‐containing protein kinase 1 (ROCK1), which was enhanced in PHB‐knockdown cells, followed by actin filament depolymerisation and accumulation of tubulin in the blebbing cells. Inhibition of ROCK1 by siRNA or its inhibitor suppressed Cholix‐induced PARP cleavage and reactive oxygen species generation. Our findings identify PHB as a new protein that interacts with Cholix and is involved in Cholix‐induced mitochondrial dysfunction and cytoskeletal rearrangement by ROCK1 activation during apoptosis.  相似文献   

11.
Bcl-2 family members, like the structurally similar translocation domain of diphtheria toxin, can form ion-selective channels and larger-diameter pores in artificial lipid bilayers. Recent studies show how Bcl-2 family members change topology in membranes during apoptosis and that these different states may either promote or inhibit apoptosis. Binding of BH3-only proteins alters the subcellular localization and/or membrane topology and probably affects the channel formation of Bcl-2, Bcl-xL and Bcl-w. However, it remains unclear how the pore-forming activity functions in cells to regulate mitochondrial membrane permeabilization and cell death. Bcl-2 family members in flies and worms regulate apoptosis by mechanisms seemingly unrelated to membrane permeabilization, leaving a unifying model for the biochemical activity of this protein family unknown. Work linking Bcl-2 family members to mitochondrial morphogenesis in worms and mammals suggests some common functions of Bcl-2 family proteins may exist.  相似文献   

12.
Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane is critical to water reabsorption in renal collecting ducts and its regulation maintains body water homeostasis. However, exact molecular mechanisms which recruit AQP2 are unknown. Recent studies highlighted a key role for spatial and temporal regulation of actin dynamics in AQP2 trafficking. We have recently identified AQP2-binding proteins which directly regulate this trafficking: SPA-1, a GTPase-activating protein (GAP) for Rap1, and cytoskeletal protein actin. In addition, a multiprotein “force generator” complex which directly binds to AQP2 has been discovered. This review summarizes recent advances related to the mechanism for AQP2 trafficking.  相似文献   

13.
Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin‐like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1‐dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP‐induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.  相似文献   

14.
Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane is critical to water reabsorption in renal collecting ducts and its regulation maintains body water homeostasis. However, exact molecular mechanisms which recruit AQP2 are unknown. Recent studies highlighted a key role for spatial and temporal regulation of actin dynamics in AQP2 trafficking. We have recently identified AQP2-binding proteins which directly regulate this trafficking: SPA-1, a GTPase-activating protein (GAP) for Rap1, and cytoskeletal protein actin. In addition, a multiprotein "force generator" complex which directly binds to AQP2 has been discovered. This review summarizes recent advances related to the mechanism for AQP2 trafficking.  相似文献   

15.
Mitochondria typically form a reticular network radiating from the nucleus, creating an interconnected system that supplies the cell with essential energy and metabolites. These mitochondrial networks are regulated through the complex coordination of fission, fusion and distribution events. While a number of key mitochondrial morphology proteins have been identified, the precise mechanisms which govern their activity remain elusive. Moreover, post translational modifications including ubiquitination, phosphorylation and sumoylation of the core machinery are thought to regulate both fusion and division of the network. These proteins can undergo several different modifications depending on cellular signals, environment and energetic demands of the cell. Proteins involved in mitochondrial morphology may also have dual roles in both dynamics and apoptosis, with regulation of these proteins under tight control of the cell to ensure correct function. The absolute reliance of the cell on a functional mitochondrial network is highlighted in neurons, which are particularly vulnerable to any changes in organelle dynamics due to their unique biochemical requirements. Recent evidence suggests that defects in the shape or distribution of mitochondria correlate with the progression of neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease. This review focuses on our current understanding of the mitochondrial morphology machinery in cell homeostasis, apoptosis and neurodegeneration, and the post translational modifications that regulate these processes.  相似文献   

16.
17.
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.  相似文献   

18.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

19.
20.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号