首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The super-kdr insecticide resistance trait of the house fly confers resistance to pyrethroids and DDT by reducing the sensitivity of the fly nervous system. The super-kdr genetic locus is tightly linked to the Vssc1 gene, which encodes a voltage-sensitive sodium channel alpha subunit that is the principal site of pyrethroid action. DNA sequence analysis of Vssc1 alleles from several independent super-kdr fly strains identified two amino acid substitutions associated with the super-kdr trait: replacement of leucine at position 1014 with phenylalanine (L1014F), which has been shown to cause the kdr resistance trait in this species, and replacement of methionine at position 918 with threonine (M918T). We examined the functional significance of these mutations by expressing house fly sodium channels containing them in Xenopus laevis oocytes and by characterizing the biophysical properties and pyrethroid sensitivities of the expressed channels using two-electrode voltage clamp. House fly sodium channels that were specifically modified by site-directed mutagenesis to contain the M918T/L1014F double mutation gave reduced levels of sodium current expression in oocytes but otherwise exhibited functional properties similar to those of wildtype channels and channels containing the L1014F substitution. However, M918T/L1014F channels were completely insensitive to high concentrations of the pyrethroids cismethrin and cypermethrin. House fly sodium channels specifically modified to contain the M918T single mutation, which is not known to exist in nature except in association with the L1014F mutation, gave very small sodium currents in oocytes. Assays of these currents in the presence of high concentrations of cismethrin suggest that this mutation alone is sufficient to abolish the pyrethroid sensitivity of house fly sodium channels. These results define the functional significance of the Vssc1 mutations associated with the super-kdr trait of the house fly and are consistent with the hypothesis that the super-kdr trait arose by selection of a second-site mutation (M918T) that confers to flies possessing it even greater resistance than the kdr allele containing the L1014F mutation.  相似文献   

2.
The toxicity of cypermethrin to the horn fly Haematobia irritans (L.) (Diptera: Muscidae) was determined for samples collected from untreated herds at a farm in central Argentina from October 1997 to May 2001. Field tests of the efficacy of cypermethrin against horn flies were first carried out at this farm in 1993, when the fly was shown to be susceptible to pyrethroids. Subsequently the horn fly populations on this farm were shown to have become resistant and, since 1997, the use of cypermethrin has been restricted to experimental purposes. In this study, fly samples collected in 1999, 2000 and 2001 were subjected to a polymerase chain reaction (PCR) to detect the presence of a specific nucleotide substitution in the sodium channel gene sequence, which has been associated with target site insensitivity to pyrethroids. This analysis showed that the level of cypermethrin resistance had diminished between 1997 and 2001. However, this was not sufficient to restore the efficacy of this pyrethroid to the level found prior to the onset of resistance. Heterozygous and homozygous resistant flies were detected in all samples of flies subjected to PCR diagnosis of alleles conferring target site resistance.  相似文献   

3.
Beginning in November 2007 and continuing until December 2009, weekly stable fly, Stomoxys calcitrans (L.), surveillance was conducted at four equine facilities near Ocala, FL, by using alsynite sticky traps for adults and by searching immature developmental sites for pupae. Adult stable fly trap captures were highly variable throughout the year, ranging from 0 to 1,400 flies per trap per farm. The greatest adult stable fly activity was observed during the spring months of March and April, with weekly three-trap means of 121 and 136 flies per farm, respectively. The importance of cultural control measures was most apparent on the only farm with no reported insecticide use and the lowest stable fly trap captures, where an intense daily sanitation and composting program was conducted. A survey of on-site filth fly pupae revealed that 99.9% of all parasitoids recovered were Spalangia spp., consisting of Spalangia cameroni Perkins (56.5%), Spalangia nigroaenea Curtis (34.0%), Spalangia endius Walker (5.8%), and Spalangia nigra Latreille (3.7%). The implications of these findings are discussed.  相似文献   

4.
Some strains of Heliothis virescens carry a novel sodium channel mutation, corresponding to the replacement of Val410 by Met (designated V410M) in the house fly Vssc1 sodium channel, that is genetically and physiologically associated with pyrethroid resistance. To test the functional significance of this mutation, we created a house fly Vssc1 sodium channel containing the V410M mutation by site-directed mutagenesis, expressed wildtype and specifically mutated sodium channels in Xenopus laevis oocytes, and evaluated the effects of the V410M mutation on the functional and pharmacological properties of the expressed channels by two-electrode voltage clamp. The V410M mutation caused depolarizing shifts of approximately 9mV and approximately 5mV in the voltage dependence of activation and steady-state inactivation, respectively, of Vssc1 sodium channels. The V410M mutation also reduced the sensitivity of Vssc1 sodium channels to the pyrethroid cismethrin at least 10-fold and accelerated the decay of cismethrin-induced sodium tail currents. The degree of resistance conferred by the V410M mutation in the present study is sufficient to account for the degree of pyrethroid resistance in H. virescens that is associated with this mutation. Although Val410 is located in a sodium channel segment identified as part of the binding site for batrachotoxin, the V410M mutation did not alter the sensitivity of house fly sodium channels to batrachotoxin. The effects of the V410M mutation on the voltage dependence and cismethrin sensitivity of Vssc1 sodium channels were indistinguishable from those caused by another sodium channel point mutation, replacement of Leu1014 by Phe (L1014F), that is the cause of knockdown resistance to pyrethroids in the house fly. The positions of the V410M and L1014F mutations in models of the tertiary structure of sodium channels suggest that the pyrethroid binding site on the sodium channel alpha subunit is located at the interface between sodium channel domains I and II.  相似文献   

5.
The kdr and super-kdr point mutations found in the insect sodium channel gene are postulated to confer knockdown resistance (kdr) to pyrethroids. Using an allele-specific PCR assay to detect these mutations in individual horn flies, Haematobia irritans (L.), we determined the allelic frequency of the kdr and super-kdr mutations in several wild and laboratory populations. Wild populations with very similar allelic frequencies had resistance levels that ranged widely from 3- to 18-fold relative to a susceptible population. Conversely, the kdr allele frequency in a lab population with 17-fold resistance was nearly double that found in a heavily pressured wild population with 18-fold resistance. We conclude that, although the kdr mutation confers significant levels of pyrethroid resistance, a substantial component of resistance in insecticidally pressured populations is conferred by mechanisms that are PBO-suppressible. High super-kdr allele frequencies were detected in two resistant lab populations, but in wild populations with equivalent resistance the super-kdr allele frequency was very low. Interestingly, in over 1200 individuals assayed, the super-kdr mutation was never detected in the absence of the kdr mutation.  相似文献   

6.
In a search for a pyrethroid resistance diagnostic marker, a partial sequence of the para-like sodium channel gene was obtained from 78 diploid females of the arrhenotokous insect pest species Frankliniella occidentalis (Pergande), the western flower thrips. Although all the insects analyzed came from a single laboratory population, nine different haplotypes were obtained. Two haplotypes did have the well-known L to F kdr mutation, but only one of these could be statistically linked to pyrethroid resistance in our population. This haplotype did not have the superkdr mutation, but did have a unique mutation a few amino acids downstream, at a position already linked to resistance in Plutella. Although this para-like locus seemed to have a role in pyrethroid resistance in our population, other resistance mechanisms were also probably involved. The fact that our laboratory population, open to migration, contained ahigh genetic diversity forthis selected gene shows that "pest tourism" is a major factor for resistance dynamics in this greenhouse pest. This, with the possible occurrence of an original resistance mutation, might preclude the use of very specific approaches for resistance monitoring in the field in this species.  相似文献   

7.
Knockdown resistance (kdr) to pyrethroid insecticides is caused by point mutations in the pyrethroid target site, the para-type sodium channel of nerve membranes. This most commonly involves alterations within the domain II (S4–S6) region of the channel protein where five different mutation sites have been identified across a range of insect species. To investigate the incidence of this mechanism in cat fleas, we have cloned and sequenced the IIS4–IIS6 region of the para sodium channel gene from seven laboratory flea strains. Analysis of these sequences revealed two amino acid replacements at residues previously implicated in pyrethroid resistance. One is the ‘common’ kdr mutation, a leucine to phenylalanine substitution (equivalent to L1014F of housefly) reported previously in several other insects. The other is a threonine to valine substitution (equivalent to T929V) and is a novel variant of the T929I mutation first identified in diamondback moth. The L1014F mutation was found at varying frequency in all of the laboratory flea strains, whereas the T929V mutation was found only in the highly resistant Cottontail strain. We have developed rapid PCR-based diagnostic assays for the detection of these mutations in individual cat fleas and used them to show that both L1014F and T929V are common in UK and US flea populations. This survey revealed a significant number of fleas that carry only the V929 allele indicating that co-expression with the F1014 allele is not necessary for flea viability.  相似文献   

8.
Populations of Plutella xylostella, extending over 3800 km in southern Australia, show no genetic structure as assessed by microsatellite markers; yet outbreaks of pyrethroid resistance occur sporadically in cropping areas. Since mutations in the para voltage-gated sodium channel gene have been implicated in pyrethroid resistance, we looked for DNA sequence variation at this target among Australian moths. We found two resistance mutations previously reported for this species (L1014F and T929I), as well as a novel substitution (F1020S). Of the eight possible haplotypes formed by combinations of these three biallelic polymorphisms, only four were found in Australian populations: the wild-type allele (w), the kdr mutation allele (kdr) with only L1014F, the super-kdr-like combination of L1014F and T929I (skdrl), and the crashdown allele with only F1020S (cdr). Comparison of genotype frequencies among survivors of permethrin assays with those from untreated controls identified three resistant genotypes: skdrl homozygotes, cdr homozygotes and the corresponding heterozygote, cdr/skrdl - the heterozygote being at least as resistant as either homozygote. Spatial heterogeneity of allele frequencies was conspicuous, both across the continent and among local collections, consistent with reported spatial heterogeneity of pyrethroid resistance. Further, high resistance samples were sometimes associated with high frequency of cdr, sometimes high frequency of skdrl, or sometimes with a high combined cdr+skdrl frequency. The skdrl and cdr alleles explain a high proportion of the Australia-wide resistance variation. These data add to evidence that nerve insensitivity by mutations in the para-sodium channel gene is a common pyrethroid resistance mechanism in P. xylostella.  相似文献   

9.
10.
Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies.  相似文献   

11.
A study was conducted at the Pressler ranch, near Kerrville, Texas, USA between 2002 and 2006 to determine the dynamics and mechanisms of resistance to permethrin in a field population of the horn fly, Haematobia irritans irritans (L.). Changes of resistance to pyrethroid insecticide associated with use of a pour-on formulation of cyfluthrin in 2002 and use of diazinon ear tags in subsequent years were studied using a filter paper bioassay technique and a polymerase chain reaction assay that detects two sodium channel mutations, kdr and super-kdr resistance alleles. A maximum of 294-fold resistance to permethrin was observed in the summer of 2002. A significant decrease in the resistance level was observed in spring 2003, and resistance continued to decline after animals were treated with diazinon ear tags. In response to pyrethroid treatments, the allelic kdr and super-kdr frequency increased from 56.3% to 93.8% and from 7.5% to 43.8%, respectively in 2002, and decreased significantly in 2003 when the pyrethroid insecticide was no longer used to treat animals. Females were found to have a higher allelic super-kdr frequency than males in 2002, while no difference was detected between males and females in the allelic kdr frequency. There was a significant positive correlation between frequencies of the sodium channel mutations and levels of permethrin resistance, suggesting that the sodium channel mutations, kdr and super-kdr , are the major mechanisms of resistance to pyrethroids in this horn fly population. Results of synergist bioassays also indicated possible contributions of two metabolic detoxification mechanisms, the mixed function oxidases (MFO) and glutathione S-transferases (GST). Compared to a horn fly infestation of an untreated herd, treatments with the pyrethroid pour-on formulation failed to control horn flies at the Pressler ranch in 2002. Sustained control of horn flies was achieved with the use of diazinon ear tags in 2003 and subsequent years.  相似文献   

12.
Point mutations in the para-orthologous sodium channel alpha-subunit of the head louse (M815I, T917I, and L920F) are associated with permethrin resistance and DDT resistance. These mutations were inserted in all combinations using site-directed mutagenesis at the corresponding amino acid sequence positions (M827I, T929I, and L932F) of the house fly para-orthologous voltage-sensitive sodium channel alpha-subunit (Vssc1(WT)) gene and heterologously co-expressed with the sodium channel auxiliary subunit of house fly (Vsscbeta) in Xenopus oocytes. The double mutant possessing M827I and T929I (Vssc1(MITI)/Vsscbeta) caused a approximately 4.0mV hyperpolarizing shift and the triple mutant, Vssc1(MITILF)/Vsscbeta, caused a approximately 3.2mV depolarizing shift in the voltage dependence of activation curves. Vssc1(MITI)/Vsscbeta, Vssc1(TILF)/Vsscbeta, and Vssc1(MITILF)/Vsscbeta caused depolarizing shifts ( approximately 6.6, approximately 7.6, and approximately 8.8mV, respectively) in the voltage dependence of steady-state inactivation curves. The M827I and L932F mutations reduced permethrin sensitivity when expressed alone but the T929I mutation, either alone or in combination, virtually abolished permethrin sensitivity. Thus, the T929I mutation is the principal cause of permethrin resistance in head lice. Comparison of the expression rates of channels containing single, double and triple mutations with that of Vssc1(WT)/Vsscbeta channels indicates that the M827I mutation may play a role in rescuing the decreased expression of channels containing T929I.  相似文献   

13.
The cotton aphid, Aphis gossypii Glover, is one of the most important agricultural insect pests. Pyrethroid and neonicotinoid insecticides have generally shown excellent control of A. gossypii, but many populations of this pest have developed resistance against these classes of insecticides. The success of insecticide resistance management strategies requires detailed knowledge of both phenotype and genotype of the target insect pest. In this study, we attempted to understand the molecular status of insecticide resistance in cotton aphid populations in Xinjiang Uygur Autonomous Region of China, the major cotton planting region of China. In addition to the previously reported M918L mutation, we discovered another substitution (M918V) in the voltage-gated sodium channel (VGSC). Moreover, we developed a molecular assay that could be used to detect precisely the R81T mutation in the nicotinic acetylcholine receptor (nAChR). This survey revealed that 918L was the predominant VGSC allele with a frequency ranging from 50.0% to 56.7%. Notably, appreciable frequencies (between 10% and 40%) of the resistance 81T allele of the nAChR gene were detected in three investigated populations. The prevalent co-occurrence of both VGSC 918L/V and nAchR 81T indicates a worrisome situation of multiple resistance to both pyrethroids and neonicotinoids.  相似文献   

14.
与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测   总被引:12,自引:2,他引:12  
王利华  吴益东 《昆虫学报》2004,47(4):449-453
通过RT-PCR克隆了烟粉虱Bemisia tabaci (Gennadius) 南京种群(B-生物型)的钠离子通道结构域ⅡS4-6 cDNA片段,证实了与拟除虫菊酯抗性相关的是位于第925位亮氨酸到异亮氨酸的突变(L925I),并建立了L925I突变的PASA检测技术。与SUD-S敏感品系相比,2002年采自南京棉花上的烟粉虱种群对氯氰菊酯具有77倍的抗性,用氯氰菊酯对该种群进行多次筛选后,该种群对氯氰菊酯的抗药性提高到227倍。PASA检测结果表明筛选后的南京种群中100%个体都具有L925I突变(61.1%的个体为L925I突变纯合子,38.9%的个体为杂合子),而未筛选的南京种群只有75%个体具有L925I突变(35%个体为L925I突变纯合子,40%的个体为杂合子,25%的个体为野生型)。该结果表明了烟粉虱钠离子通道L925I突变与对拟除虫菊酯抗性密切相关。还讨论了烟粉虱对拟除虫菊酯抗性的代谢机理。  相似文献   

15.
Knockdown resistance (kdr) to pyrethroid insecticides is caused by point mutations in the pyrethroid target site, the para-type sodium channel of nerve membranes. This most commonly involves alterations within the domain II (S4-S6) region of the channel protein, where several different mutation sites have been identified across a range of insect species. To investigate the possibility that a kdr-type mechanism is responsible for pyrethroid resistance in sea lice, a domain II region of the Lepeophtheirus salmonis sodium channel gene was PCR amplified and sequenced. To our knowledge, this is the first published sodium channel sequence from a crustacean. Comparison of sequences from a range of samples, including several individuals from areas in which control failures had been reported, failed to identify any of the mutations within this region that have previously been linked with resistance. Instead, a novel glutamine to arginine mutation, Q945R, in transmembrane segment IIS5 was consistently found in the samples from areas of control failure and may therefore be associated with resistance to pyrethroids in this species.  相似文献   

16.
House flies were collected from 16 different provinces in the Aegean and Mediterranean regions of Turkey, and the frequencies of pyrethroid resistance-associated mutations in Vssc1 and CYP6D1 in these field-collected populations were studied. Although there is no organized resistance management program for house fly control in Turkey, it is known that different groups of insecticides, including pyrethroids, are used. The frequencies of both Vssc1 and CYP6D1 alleles were weighted toward the susceptibles, with Vssc1-susceptible alleles having higher frequencies in both regions (0.75 in Aegean and 0.69 in Mediterranean populations) than CYP6D1-susceptible alleles (0.65 in Aegean and 0.56 in Mediterranean populations). The frequencies of kdr-his alleles were higher than the frequencies of kdr alleles in these populations. While the frequencies of kdr-his alleles were close to each other in the Aegean (0.23) and Mediterranean (0.17) populations, the frequencies of kdr alleles remarkably differed in these two regions, with values of 0.02 and 0.14, respectively. In contrast to Europe, Asia, and the U.S.A., no super-kdr allele was detected in the samples from both regions. We identified six and eight different Vssc1+CYP6D1 genotype classes in the Aegean and Mediterranean regions, respectively. The three most common genotype classes in the regions were susceptible Vssc1 with heterozygous CYP6D1v1 (29%), sus/kdr-his1 with heterozygous CYP6D1v1 (23%), and susceptible Vssc1 with CYP6D1 (22%). The total frequencies of these three most common genotype classes (approximately 75%) obtained in our study were very close to the value obtained in Florida in a previous study, which was related by the similarity of temperature patterns between Florida and the corresponding regions of Turkey. This may reflect the lack of overwintering fitness cost associated with resistance alleles in both climates.  相似文献   

17.
Pesticides are used worldwide to control arthropod parasites in cattle herds. The indiscriminate and/or inappropriate use of pesticides without veterinary guidance is a reality in several countries of South America. Improper pesticide use increases the chances of contamination of food and the environment with chemical pesticides and their metabolites. Reduction of these contamination events is an increasing challenge for those involved in livestock production. The horn fly, Haematobia irritans (Linnaeus) (Diptera: Muscidae), is one of the most economically important parasites affecting cattle herds around the world. As such, horn fly control efforts are often required to promote the best productive performance of herds. Pesticide susceptibility bioassays revealed that pyrethroid resistance was widespread and reached high levels in horn fly populations in the Brazilian state of Rondônia. The knockdown resistance (kdr) sodium channel gene mutation was detected in all horn fly populations studied (n = 48), and the super kdr sodium channel gene mutation was found in all homozygous resistant kdr individuals (n = 204). Organophosphate resistance was not identified in any of the fly populations evaluated.  相似文献   

18.
A genetic disease observed in certain Quarter horses is hyperkalaemic periodic paralysis (HYPP). This disease causes attacks of paralysis which can be induced by ingestion of potassium. Recent studies have shown that HYPP in humans is due to single base changes within the adult skeletal muscle sodium channel gene. A large Quarter horse pedigree segregating dominant HYPP was studied to determine if mutations of the sodium channel gene are similarly responsible for HYPP in horses. We used cross-species, PCR-mediated, cDNA cloning and sequencing of the horse adult skeletal muscle sodium channel alpha-subunit gene to identify a polymorphism, and then used this polymorphism to see if the horse sodium channel gene was genetically linked to HYPP in horses. The sodium channel gene was indeed found to be tightly linked to HYPP (LOD = 2.7, theta = 0). Our results suggest that HYPP in horses involves the same gene as the clinically similar human disease, and indicates that these are homologous disorders. The future identification of the specific sodium channel mutation causing HYPP in Quarter horses will permit the development of accurate molecular diagnostics of this condition, as has been recently shown for humans.  相似文献   

19.
The functional expression of cloned Drosophila melanogaster and house fly (Musca domestica) voltage-sensitive sodium channels in Xenopus oocytes is enhanced, and the inactivation kinetics of the expressed channels are accelerated, by coexpression with the tipE protein, a putative sodium channel auxiliary subunit encoded by the tipE gene of D. melanogaster. These results predict the existence of a tipE ortholog in the house fly. Using a PCR-based homology probing approach, we isolated cDNA clones encoding an ortholog of tipE (designated Vssc beta) from adult house fly heads. Clones comprising 3444 bp of cDNA sequence contained a 1317 bp open-reading frame encoding a 438 amino acid protein. The predicted Vssc beta protein exhibited 72% amino acid sequence identity to the entire D. melanogaster tipE protein sequence and 97% identity within the two hydrophobic segments identified as probable transmembrane domains. Coexpression of Vssc beta with the house fly sodium channel alpha subunit (Vssc1) in oocytes enhanced the level of sodium current expression five-fold and accelerated the rate of sodium current inactivation 2.2-fold. Both of these effects were significantly larger in magnitude than the corresponding effects of the D. melanogaster tipE protein on the expression and kinetics of Vssc1 sodium channels. These results identify a second example of a putative sodium channel auxiliary subunit from an insect having functional but not structural homology to vertebrate sodium channel beta subunits.  相似文献   

20.
Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号