首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390 kPa) compared to the NP (100 kPa) or AF (30 kPa). The permeability was very different across tissue regions, with the AF permeability (64 E−16 m4/N s) higher than the NP and CEP (~5.5 E−16 m4/N s). Additionally, a normalized time-constant (3000 s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical behavior and transport.  相似文献   

2.
The biphasic material properties for nucleus pulposus tissue in confined compression have not been reported previously, and are required for a better understanding of intervertebral disc function and to provide material properties for use in finite-element models. The aims of this study were to determine linear and non-linear material properties for nucleus pulposus and annulus fibrosus tissues in confined compression, to define the influence of swelling conditions on these properties, and to determine the changes in the compressive modulus and hydraulic permeability induced by the repetition of the stress-relaxation experiment after a return to swelling pressure equilibrium. Specimens from caudal bovine nucleus and annulus were tested in confined compression stress-relaxation experiments and analyzed to quantify the compressive modulus and hydraulic permeability using linear and non-linear biphasic models. Our results suggested the use of confined swelling pre-test condition and non-linear biphasic model, which provided the material parameters with lowest relative variance and water content most representative of physiological conditions. Smaller compressive modulus and higher hydraulic permeability were obtained for the nucleus (H(A0)=0.31+/-0.04 MPa, k(0)=0.67+/-0.09 x 10(-15)m(4)/Ns) than for the annulus (H(A0)=0.74+/-0.13 MPa, k(0)=0.23+/-0.19 x 10(-15)m(4)/Ns), with relatively weak non-linearities. Strains up to 20% resulted in material properties that were significantly altered upon retesting. These altered material properties are an effort to quantify non-recoverable damage that occurs in disc tissue and suggest that in vivo exposure of disc tissues to low strain-rate and high-deformation loading conditions which outpace biological repair may result in altered mechanical behaviors.  相似文献   

3.
Degeneration of the nucleus pulposus (NP) has been implicated as a major cause of low back pain. Tissue engineering strategies may provide a viable NP replacement therapy; however, culture conditions must be optimized to promote functional tissue development. In this study, a standard serum‐containing medium formulation was compared to a chemically defined, serum‐free medium to determine the effect on matrix elaboration and functional properties of NP cell‐laden carboxymethylcellulose (CMC) hydrogels. Additionally, both media were further supplemented with transforming growth factor‐beta 3 (TGF‐β3). Glycosaminoglycan (GAG) content increased in both TGF‐β3‐treated groups and was highest for treated, serum‐free constructs (9.46 ± 1.51 µg GAG/mg wet weight), while there were no quantifiable GAGs in untreated serum‐containing samples. Histology revealed uniform, interterritorial staining for chondroitin sulfate proteoglycan throughout the treated, serum‐free constructs. Type II collagen content was greater in both serum‐free groups and highest in treated, serum‐free constructs. The equilibrium Young's modulus was highest in serum‐free samples supplemented with TGF‐β3 (18.54 ± 1.92 kPa), and the equilibrium weight swelling ratio of these constructs approached that of the native NP tissue (22.19 ± 0.46 vs. 19.94 ± 3.09, respectively). Taken together, these results demonstrate enhanced functional matrix development by NP cells when cultured in CMC hydrogels maintained in serum‐free, TGF‐β3 supplemented medium, indicating the importance of medium formulation in NP construct development. Biotechnol. Bioeng. 2010; 105: 384–395. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
N,N-Diallylaldardiamides (DA) were synthesized from galactaric, xylaric, and arabinaric acids, and used as cross-linkers together with xylan (X) derivatives to create new bio-based hydrogels. Birch pulp extracted xylan was derivatized to different degrees of substitution of 1-allyloxy-2-hydroxy-propyl (A) groups combined with 1-butyloxy-2-hydroxy-propyl (B) and/or hydroxypropyl (HP) groups. The hydrogels were prepared in water solution by UV induced free-radical cross-linking polymerization of derivatized xylan polymers without DA cross-linker (xylan derivative hydrogel) or in the presence of 1 or 5 wt % of DA cross-linker (DA hydrogel). Commercially available cross-linker (+)-N,N′-diallyltartardiamide (DAT) was also used. The degree of substitution (DS) of A, B, and HP groups in xylan derivatives was analyzed according to 1H NMR spectra. The DS values for the cross-linkable A groups of the derivatized xylans were 0.4 (HPX-A), 0.2 (HPX-BA), and 0.4 (X-BA). The hydrogels were examined with FT-IR and elemental analysis which proved the cross-linking successful. Water absorption of the hydrogels was examined in deionized water. Swelling degrees up to 350% were observed. The swollen morphology of the hydrogels was assessed by scanning electron microscopy (SEM). The presence of cross-linkers in DA hydrogels had only a small impact on the water absorbency when compared to xylan derivative hydrogels but a more uniform pore structure was achieved.  相似文献   

5.
Controlled osmotic swelling and de-swelling measurements have been performed on gelatin, a polyampholyte, hydrogels suspended in water-ethanol marginal solvent at room temperature (20 degrees C) where the alcohol concentration was changed from 0 to 100% (v/v). The change in gel mass was monitored as function of time until osmotic equilibrium was established with the surrounding solvent. It was observed that osmotic pressure of polymer-solvent mixing, pi(m)相似文献   

6.
We synthesized positively charged biodegradable hydrogels by cross-linking of agmatine-modified poly(ethylene glycol)-tethered fumarate (Agm-PEGF) and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) to investigate the effect of the guanidino groups of the agmatine on hydrogel swelling behavior and smooth muscle cell adhesion to the hydrogels. The weight swelling ratio of these hydrogels at pH 7.0 increased from 279 +/- 4 to 306 +/- 7% as the initial Agm-PEGF content increased from 0 to 200 mg/g of P(PF-co-EG), respectively. The diffusional exponents, n, during the initial phase of water uptake were independent of the initial Agm-PEGF content and were determined to be 0.66 +/- 0.08, 0.71 +/- 0.07, and 0.60 +/- 0.05 for respective initial Agm-PEGF contents of 0, 100, and 200 mg/g. The heat of fusion of water present in the hydrogels increased from 214 +/- 11 to 254 +/- 4 J/g as the initial Agm-PEGF content increased from 0 to 200 mg/g. The number of adherent smooth muscle cells increased dose-dependently from 15 +/- 6 to 75 +/- 7% of the initial seeding density as the initial Agm-PEGF content increased from 0 to 200 mg/g. These results suggest that the incorporation of the guanidino groups of agmatine into P(PF-co-EG) hydrogels increases the hydrogel free water content and the total water content of the hydrogels and also enhances cell adhesion to the hydrogels.  相似文献   

7.
Thiol-functionalized dextrans (dex-SH) (M(n,dextran) = 14K or 31K) with degrees of substitution (DS) ranging from 12 to 25 were synthesized and investigated for in situ hydrogel formation via Michael type addition using poly(ethylene glycol) tetra-acrylate (PEG-4-Acr) or a dextran vinyl sulfone conjugate with DS 10 (dex-VS DS 10). Dex-SH was prepared by activation of the hydroxyl groups of dextran with 4-nitrophenyl chloroformate and subsequent reaction with cysteamine. Hydrogels were rapidly formed in situ under physiological conditions upon mixing aqueous solutions of dex-SH and either PEG-4-Acr or dex-VS DS 10 at polymer concentrations of 10 to 20 w/v%. Rheological studies showed that these hydrogels are highly elastic. By varying the DS, concentration, dextran molecular weight, and type of cross-linker, hydrogels with a broad range of storage moduli of 9 to 100 kPa could be obtained. Varying the ratio of thiol to vinyl sulfone groups from 0.9 to 1.1 did not alter the storage modulus of the hydrogels, whereas larger deviations from equimolarity (thiol to vinyl sulfone ratios of 0.75 and 1.5) considerably decreased the storage modulus. The plateau value of hydrogel storage modulus was reached much faster at pH 7.4 compared to pH 7, due to a higher concentration of the thiolate anion at higher pH. These hydrogels were degradable under physiological conditions. Degradation times were 3 to 7 weeks for dex-SH/dex-VS DS 10 hydrogels and 7 to over 21 weeks for dex-SH/PEG-4-Acr hydrogels, depending on the DS, concentration, and dextran molecular weight.  相似文献   

8.
Previous studies have shown that stress relaxation behavior of calf ulnar growth plate and chondroepiphysis cartilage can be described by a linear transverse isotropic biphasic model. The model provides a good fit to the observed unconfined compression transients when the out-of-plane Poisson's ratio is set to zero. This assumption is based on the observation that the equilibrium stress in the axial direction (deltaz) is the same in confined and unconfined compression, which implies that the radial stress deltar = 0 in confined compression. In our study, we further investigated the ability of the transversely isotropic model to describe confined and unconfined stress relaxation behavior of calf cartilage. A series of confined and unconfined stress relaxation tests were performed on calf articular cartilage (4.5 mm diameter, approximately 3.3 mm height) in a displacement-controlled compression apparatus capable of measuring delta(z) and delta(r). In equilibrium, delta(r) > 0 and delta(z) in confined compression was greater than in unconfined compression. Transient data at each strain were fitted by the linear transversely isotropic biphasic model and the material parameters were estimated. Although the model could provide good fits to the unconfined transients, the estimated parameters overpredicted the measured delta(r). Conversely, if the model was constrained to match equilibrium delta(r), the fits were poor. These findings suggest that the linear transversely isotropic biphasic model could not simultaneously describe the observed stress relaxation and equilibrium behavior of calf cartilage.  相似文献   

9.
Various interpenetrating polymer network (IPN) hydrogels with sensitivity to temperature and pH were prepared by introducing the pH-sensitive polymer polyaspartic acid (PASP) hydrogel, into the poly(N-isopropylacrylamide) (PNIPAAm) hydrogel system for the purpose of improving its response rate to temperature. The morphologies and thermal behavior of the prepared IPN hydrogels were studied by both scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The IPN hydrogels showed a large and uneven porous network structure, without showing the common PNIPAAm hydrogel structure. The paper moreover studied their swelling properties, such as temperature dependence of equilibrium swelling ratio, shrinking kinetics, re-swelling kinetics and oscillatory swelling behavior in water. The swelling experiment results revealed that IPN hydrogels exhibited much faster shrinking and re-swelling in function of the composition ratio of the two network components. These fast responsive hydrogels foster potential applications in biomedical and biotechnology fields.  相似文献   

10.
Biphasic indentation of articular cartilage--I. Theoretical analysis   总被引:4,自引:0,他引:4  
A mathematical solution has been obtained for the indentation creep and stress-relaxation behavior of articular cartilage where the tissue is modeled as a layer of linear KLM biphasic material of thickness h bonded to an impervious, rigid bony substrate. The circular (radius = a), plane-ended indenter is assumed to be rigid, porous, free-draining, and frictionless. Double Laplace and Hankel transform techniques were used to solve the partial differential equations. The transformed equations and boundary conditions yielded an integral equation of the Fredholm type which was analyzed asymptotically and solved numerically. Our asymptotic analyses showed that the linear KLM biphasic material behaves like an incompressible (v = 0.5) single-phase elastic solid at t = 0+; the instantaneous response of the material is governed by the shear modulus (mu s) of the solid matrix. The linear KLM biphasic material behaves like a compressible elastic solid with material properties defined by those of the solid matrix, i.e. (lambda s, mu s) or (mu s, v s) as t----infinity. The transient viscoelastic creep and stress-relaxation behavior, 0 less than t less than infinity, of this material is controlled by the frictional drag (which is inversely proportional to the permeability k) associated with the flow of the interstitial fluid through the porous-permeable solid matrix. For given values of the Poisson's ratio of the solid matrix v s and the aspect ratio a/h, where a is the radius of the indenter and h is the thickness of the layer, the creep behavior with respect to the dimensionless time H Akt/a2 is completely controlled by the load parameter P/2 mu sa2 and the stress relaxation behavior is completely controlled by the rate of compression parameter R0 = kH A/V0h where H A = lambda s + 2 mu s and the equilibrium strain u0/h. This mathematical solution may now be used to describe an indentation experiment on articular cartilage to determine the intrinsic material properties of the tissue, i.e. permeability k, and the elastic coefficients of the solid phase (lambda s, mu s) or (mu s, v s).  相似文献   

11.
Solid media containing carboxymethyl cellulose (CMC) were developed to detect CX cellulose-producing micro-organisms. Hydrolysis of CMC was seen as a clear zone around colonies after flooding plates with 1% aqueous hexadecyltrimethyl-ammonium bromide. Tests with ten bacterial and four fungal species showed that the degree of substitution (DS) of the CMC affects both growth and enzyme production. Most of the organisms produced more CX cellulase on CMC with a DS of 0-9, but CMC with a DS of 0-4 was better for one fungus. A qualitative measure of cellulase production may be obtained by calculating the ratio of zone size to colony diameter. Solid media containing CMC provided a more rapid assay of CX cellulose production than a medium containing native cellulose.  相似文献   

12.
Polymeric matrices of chitosan (CS), 2-hydroxyethyl starch (HES) and their blends prepared by solvent evaporation technique, have been tested as sustained release hydrogels of ropinirole drug. X-Ray diffraction (XRD), infrared spectroscopy (FT-IR) and viscometry measurements showed that the two polymers can form miscible blends. This miscibility is owed to formed hydrogen bonds taking place between the reactive groups of CS and HES and one glass transition is recorded in all blends. Neat polymers were used to prepare solid dispersion formulations with ropinirole drug. It was found that drug was released immediately within 15-30 min from HES while the release was slower from CS matrix. Completely different were the release rates from ropinirole with physical mixtures using neat polymers and their blends. Due to the different solubility and swelling behaviour of CS and HES the release rates showed a sustained profile from the blends containing high amounts of CS.  相似文献   

13.
Heat denaturation of orosomucoid in solutions of methanol concentrations ranging from 0 to 70% (v/v) has been studied by using circular dichroism, intrinsic protein fluorescence and thermal difference absorption spectroscopy. Regardless of its high saccharide content (40%), the highly cooperative denaturation transition of orosomucoid is fully reversible in neutral water solution. A two-state model has been successfully applied; the numerical analysis results in thermodynamical parameter values that are in close agreement with previously reported experimental data from calorimetric measurements. However, in solutions containing even minute concentrations of methanol (5%) the heat denaturation is irreversible. After cooling of the denatured protein the refolded molecules exhibit a higher α-helical content than the native one. Possibilities of methanol interaction with native and denatured protein molecule are discussed.  相似文献   

14.
O-Acetyl-galactoglucomannan (AcGGM) is the major soft-wood hemicellulose. Structurally modified AcGGM and hydrogels of AcGGM were prepared. The degree of substitution (DS) of AcGGM was modified enzymatically with alpha-galactosidase, and chemically with an acrylate derivative, 2-hydroxyethylmethacrylate (HEMA). The hydrolysis of AcGGM with beta-mannanase was shown to increase with decreasing DS. AcGGM hydrogels were prepared from chemically modified AcGGM with varying DS of HEMA. Bovine serum albumin (BSA) was encapsulated in hydrogels. A spontaneous burst release of BSA was decreased with increased DS of HEMA. The addition of beta-mannanase significantly enhanced the BSA release from hydrogels with a DS of 0.36, reaching a maximum of 95% released BSA after eight hours compared to 60% without enzyme. Thus, both the pendant group composition and the enzyme action are valuable tools in the tailoring of hydrogel release profiles of potential interest for intestine drug delivery.  相似文献   

15.
Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries.  相似文献   

16.
DNA-responsive hydrogels that can shrink or swell   总被引:1,自引:0,他引:1  
Molecule-responsive hydrogels are reputed to be smart materials because of their unique properties. We recently reported that hydrogels containing directly grafted single-stranded (ss) DNA or ssDNA-polyacrylamide conjugate in a semi-interpenetrating network (semi-IPN) manner that "only shrunk" by the addition of ssDNA samples. To date, however, no DNA-responsive hydrogels have been reported capable of "swelling" in response to specific DNAs. Smart materials capable of both shrinking and swelling in response to specific DNAs would be very useful in biochemical and biomedical applications. Here, we show a novel "shrinking or swelling" DNA-responsive mechanism. Novel hybrid hydrogels containing rationally designed ssDNA as the cross-linker were capable of shrinking or swelling in response to ssDNA samples and recognizing a single base difference in the samples. On the basis of the results presented in this paper, it is envisioned that these novel hybrid hydrogels could function and have potential in applications such as DNA-sensing devices and DNA-triggered actuators.  相似文献   

17.
Hydrogels which release their contents in response to glucose concentration were prepared by immobilizing glucose oxidase (GOD) into β-cyclodextrin grafted polyethyleneimine hydrogels (PEI-βCD hydrogel). For the tight immobilization, hydrophobically modified GOD (HmGOD) was prepared by reacting GOD with palmitic acid-N-hydroxysuccinimide ester (PA-NHS) in the molar ratio of 1:40. According to trinitrobenzene sulfonic acid (TNBS) assay, five palmitic acids were covalently attached to one GOD molecule. The activity of HmGOD was about 76% of native enzyme. The swelling ratios of HmGOD loaded hydrogels increased from about 960% to 1190% in 24h, when glucose concentration was varied from 0 to 100mg/dl. The % release in 48 h of fluorescein isothiocyanate dextran increased from about 53% to 89%, when glucose concentration was varied in the same range. Gluconic acid, produced by the enzymatic reaction, would protonate and swell the PEI-βCD hydrogel, leading to a higher release.  相似文献   

18.
The fundamental properties and pH-sensitivity of chitosan/gelating hydrogels were investigated using spectroscopic and microelectro mechanical (MEMS) measurement approaches. Turbidimetric titration revealed that there were electrostatic attractive interactions between tripolyphosphate (TPP), chitosan, and gelatin in the acidic pH range, depending on their degree of ionization. The pH-sensitive swelling behavior of the hydrogels was investigated by monitoring the deflection of hydrogel-coated microcantilevers, which exhibited a sensitive and repeatable response to solution pH. The deflection of the microcantilever increased as the pH decreased, and the response speed of the system exhibited a nearly linear relationship with pH. The effects of the pH and concentration of TPP solution, as well as the ratio of chitosan to gelatin in gel precursor solutions, on the pH sensitivity of the hydrogels were also investigated. It was found that the swelling of the hydrogel is mainly a result of chain relaxation of chitosan-TPP complexes caused by protonation of free amino groups in chitosan, which depends on the crosslinking density set during the formation of the network. An increase in initial crosslink density induced a decrease in swelling and pH sensitivity. It can be concluded from this study that pH-sensitive chitosan gel properties can be tuned by preparatory conditions and inclusion of gelatin. Furthermore, microcantilevers can be used as a platform for gaining increased understanding of environmentally sensitive polymers.  相似文献   

19.
New dextrin hydrogels with degrees of substitution (DS) from ca. 10% (DS 10) to 70% (DS 70) were prepared by radical polymerization of aqueous solutions of vinylacrylate (VA)-derivatized dextrin. A preliminary analysis on the potential of these hydrogels for the controlled release of bioactive molecules was carried out. The protein (bovine serum albumin) diffusion coefficients on the hydrogels were calculated using the lag-time analysis. Values in range 10?7 cm2/s were obtained for DS 20 and DS 40 and a smaller value of 10?8 cm2/s arised upon DS increasing to 70%, revealing the dependence of the diffusivity on the crosslinking density. The release of BSA from dextrin-VA hydrogels, in the presence of amyloglucosidase was shown to be mainly dependent on the diffusion and, to a smaller extent, on the degradation kinetics. The protein release can be tailored from days to months by varying the DS.  相似文献   

20.
Water-soluble (1→3)-β-d-glucans with 1,6-linked branches (SBG), originally isolated from the cell walls of Saccharomyces cerevisiae and partially depolymerised for optimal performance in wound healing applications, were studied by size exclusion chromatography (SEC) with multi-angle laser light scattering (MALLS) detector and a viscosity detector at both high and ambient column temperatures. The strongly aggregating materials could be dispersed as single chains in water following partial carboxymethylation (degree of substitution (DS) 0.51 or higher). Lower DS (0.23) also dispersed as single chains provided a column temperature of 80°C was applied. Reduction of reducing ends prior to carboxymethylation was required to avoid alkaline peeling and hence to obtain correct molecular weight distributions of the native material. DS was determined using (13)C NMR and potentiometric titration (range 0.23-0.91). Further analysis of CM-SBG in the single chain state suggested a randomly coiled behaviour with marginal influence of the branches in terms of macromolecular dimensions, which were close to those of CM-curdlan. The result of the investigation is a simple and reliable protocol for preparing undegraded and un-aggregated SBG derivatives, which are well suited as a standard analysis of the molecular weight distribution of SBG-like molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号