首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Under laboratory conditions, the toxicity of three novel insecticides, spinosad (Tracer ® ), tebufenozide (Mimic ® ) and azadirachtin (Align ® ), was tested against eggs and pupae of the predator Chrysoperla carnea (Stephens). In a first series of assays, eggs were dipped in an aqueous concentration and no ovicidal activity was scored for the three insecticides. In the second, when females were ovipositing on treated substrate for 24 h, fecundity and hatching percentages were similar as compared to controls and the offspring developed normally until the adult stage. However, spinosad, at the highest concentrations tested, caused a slight, significant reduction in the adult life span and fecundity. In a third series of experiments, pupae developed into normal adults after topical treatment for the three insecticides. Herewith, a pharmacokinetic study indicated low accumulation in the body after pupal cuticle penetration when administrating 14 C-labelled insecticide. Fourthly, pupation of last-instar larvae in treated substrate was normal for spinosad and tebufenozide. Only azadirachtin caused a slight reduction in the number of pupae and adults; however, fecundity and fertility of surviving adults was normal. In conclusion, the current results indicate that the three insecticides are not toxic to eggs and pupae of C. carnea .  相似文献   

2.
We investigated the efficacy of various chemical injections against Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae) in hardwood shipping pallets. We had three principle interests: efficacy in whole structures, relative efficacy of the active ingredients, and whether acoustic evidence augmented treatment site selection. Infested pallets were delineated into boards with four monitoring sites each. Six chemical treatments were compared: chlorpyrifos aerosol, aqueous disodium octaborate tetrahydrate (DOT), resmethrin aerosol, distilled water (control), and two treatments of spinosad SC (one treatment applied based upon visual and the other treatment upon acoustic [AE] evidence). Individual boards were split apart; efficacy was determined by percentage mortality and pre- and posttreatment AE counts. Injections were constrained to a single point per board with the greatest level of termite activity. In whole pallets, mean percentage mortality ranged from 53.3 to 58.7% for the visual and AE spinosad treatments, respectively, whereas water averaged 6.8%. Remaining treatment mortalities were 33.2, 30.4, and 18.1% for chlorpyrifos, DOT, and resmethrin, respectively. Analysis of whole-pallet data indicated that none of the insecticides produced commercially acceptable mortality; localized injections of insecticides were not comparable with whole-structure treatments. We delineated independent groups of board sections (sectional aggregates; SA) that were connected by galleries. When treated SA were analyzed, spinosad and DOT treatments were significantly different from controls, whereas remaining treatments were not different from controls or spinosad and DOT. AE readings and visual termite evidence were compared with presence or absence of termites in SA, and it was determined that both AE and visual evidence were effective predictors of termite presence.  相似文献   

3.
Use of insecticides with low toxicity to natural enemies is an important component of conservation biological control. In this study, we evaluated the toxicity of insecticides used in sweet corn, Zea mays L., and soybean, Glycine max (L.) Merr., to the multicolored Asian lady beetle, Harmonia axyridis (Pallas), under laboratory and field conditions. Field experiments conducted in sweet corn in 2003 and 2004 and in soybean in 2003, showed that H. axyridis was the most abundant predator. In sweet corn, densities of H. axyridis larvae in plots treated with spinosad or indoxacarb were generally higher than in plots treated with chlorpyrifos, carbaryl, bifenthrin, and A-cyhalothrin. In soybean, densities of H. axyridis larvae in plots treated with chlorpyrifos were higher than in plots treated with lambda-cyhalothrin. Laboratory experiments were conducted to evaluate the acute toxicity of insecticides to eggs, first and third instars, pupae, and adults. Spinosad, followed by indoxacarb, were the least toxic insecticides for all life stages of H. axyridis. Conventional insecticides showed high toxicity to H. axyridis when applied at field rates under laboratory conditions. Overall, first instars were most susceptible to the insecticides tested, followed by third instars and adults, eggs, and pupae. Our results suggest that spinosad, and to a lesser extent indoxacarb, offer reduced toxicity to H. axyridis and would be beneficial for conservation biological control in agricultural systems where H. axyridis is abundant.  相似文献   

4.
Kampimodromus aberrans is an effective predatory mite in fruit orchards. The side-effects of insecticides on this species have been little studied. Field and laboratory experiments were conducted to evaluate the effects of insecticides on K. aberrans. Field experiments showed the detrimental effects of etofenprox, tau-fluvalinate and spinosad on predatory mites. Spider mite (Panonychus ulmi) populations reached higher densities on plots treated with etofenprox and tau-fluvalinate than in the other treatments. Single or multiple applications of neonicotinoids caused no detrimental effects on predatory mites. In the laboratory, spinosad and tau-fluvalinate caused 100 % mortality. Etofenprox caused a significant mortality and reduced fecundity. The remaining insecticides did not affect female survival except for imidacloprid. Thiamethoxam, clothianidin, thiacloprid, chlorpyrifos, lufenuron and methoxyfenozide were associated with a significant reduction in fecundity. No effect on fecundity was found for indoxacarb or acetamiprid. Escape rate of K. aberrans in laboratory was relatively high for etofenprox and spinosad, and to a lesser extent thiacloprid. The use of etofenprox, tau-fluvalinate and spinosad was detrimental for K. aberrans and the first two insecticides induced spider mite population increases. The remaining insecticides caused no negative effects on predatory mites in field trials. Some of them (reduced fecundity and repellence) should be considered with caution in integrated pest management programs.  相似文献   

5.
The toxicity of two biorational insecticides, spinosad (Tracer) and methoxyfenozide (RH-2485), was tested against eggs, larvae, and pupae of the noctuid Spodoptera littoralis (Boisduval). In the first experiment, filter paper circles containing egg masses of two different age classes, young (<24 h old) and old (24-48 h old), were dipped in different concentrations of each insecticide diluted in either water or acetone. No ovicidal activity was recorded when insecticides were diluted in water. In contrast, when insecticides were diluted in acetone, both egg age classes generally showed a concentration-dependent response for both compounds. Mortality of larvae that hatched from both egg age classes was significantly increased, compared with control larvae, at all concentrations of both insecticides when diluted in water or acetone alike. The prevalence of mortality was similar with each insecticide. In the second experiment, third instars of S. littoralis were fed semisynthetic diet containing different concentrations of both insecticides. According to LC50 values, no significant differences were observed between spinosad (2.11 mg [AI]/kg diet) and methoxyfenozide (3.98 mg [AI]/kg diet) after 48 h of treatment, based on the overlap of 95% CL. Toxic effects on the mortality of pupae, adult emergence, and the prevalence of deformed adults after topical application on young pupae also were examined. Only methoxyfenozide caused pupal mortality and deformed adults. Our results suggest that spinosad and methoxyfenozide are potentially potent compounds for control of S. littoralis.  相似文献   

6.
Laboratory and semifield bioassays were conducted to determine the life-stage activity of insecticides for controlling cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), a key lepidopteran pest of highbush blueberry, Vaccinium corymbosum L. The organophosphates azinphosmethyl and phosmet, the pyrethroid esfenvalerate, and the carbamate methomyl were lethal to all life stages. The neonicotinoids thiacloprid and acetamiprid demonstrated strong larvicidal and ovicidal activity but were somewhat weaker adulticides than the conventional broad-spectrum compounds. Bacillus thuringiensis, indoxacarb, and emamectin benzoate were shown to control A. vacinii primarily through their larvicidal activity. Spinosad was toxic to all life stages, including eggs laid on top of residues and those that were treated topically, but larvicidal activity was short lived. The growth regulators pyriproxyfen and novaluron had strong ovicidal activity when eggs were laid on top of residues but had limited larvicidal activity. Tebufenozide was not directly toxic to eggs, but demonstrated larvicidal activity, and ovilarvicidal activity when topically applied to eggs. Azinphosmethyl, phosmet, indoxacarb, thiacloprid, and acetamiprid were all toxic to the egg parasitoid Trichogramma minutum Riley. In contrast pyriproxyfen, emamectin benzoate, methomyl, novaluron, and spinosad did not negatively affect the survival of T. minutum within Acrobasis vacinii eggs. These results help inform the ongoing development of integrated strategies for insect management in blueberry.  相似文献   

7.
Abstract: To investigate if synergism occurs between pyrethroids, organophosphates and new insecticides, we tested representatives of these compounds (bifenthrin, chlorpyrifos, spinosad, indoxacarb and emamectin) against the diamondback moth (Plutella xylostella). Larvicidal activity of these insecticides was assessed separately and together on a susceptible strain (Lab‐UK) of P. xylostella as well as a field population collected from Multan. The field population showed significant resistance to chlorpyrifos (331 100‐fold), bifenthrin (45 200‐fold), emamectin (1800‐fold), spinosad (11‐fold) and indoxacarb (5600‐fold) when compared with the Lab‐UK population. When insecticides were mixed based on LC50 and tested at serial concentrations against Lab‐UK, significant synergy (CI < 1) occurred between bifenthrin, spinosad and emamectin. In contrast, the interaction between bifenthrin and indoxacarb was additive (CI = 1). The toxicity of bifenthrin against the field population increased significantly (P < 0.01) when combined with spinosad, emamectin and indoxacarb. Synergistic effects could be attributed to the complementary modes of action by these insecticide classes acting on different components of nerve impulse transmission (which are not identical for bifenthrin and indoxacarb either). However, chlorpyrifos/bifenthrin mixture was not significantly different either from bifenthrin or chlorpyrifos alone, indicating an additive affect. In combination with spinosad and emamectin, tested against the resistant field population, the toxicity of chlorpyrifos increased significantly and even more so with indoxacarb. Mixtures could also give rise to multiple resistance that may extend across other chemical classes and thus become difficult to manage. Therefore, alternative strategies such as mosaics or rotations should be considered. That is, though synergistic effects have been found, this should not be followed up as a strategy to manage resistant field populations.  相似文献   

8.
Agricultural organisms, such as insect herbivores, provide unique opportunities for studies of adaptive evolutionary processes, including effects of insecticides on movement and oviposition behavior. In this study, Brassica leaves were treated with one of two non-systemic insecticides and exposed to two individual strains (referred to as single or double resistance) of diamondback moth (Plutella xylostella) (DBM) exhibiting physiological resistance. Behavioral responses by these two strains were compared as part of characterizing the relative effect of levels of physiological resistance on the likelihood of insects showing signs of behavioral avoidance. For each DBM strain, we used choice bioassays to quantify two possible types of behavioral avoidance: 1) females ovipositing predominantly on leaf surfaces without insecticides, and 2) larvae avoiding insecticide-treated leaf surfaces. In three-choice bioassays (leaves with no pesticide, 50% coverage with pesticide, or 100% coverage with pesticide), females from the single resistance DBM strain laid significantly more eggs on water treated leaves compared to leaves with 100% insecticide coverage (both gamma-cyhalothrin and spinetoram). Females from the double resistance DBM strain also laid significantly more eggs on water treated leaves compared to leaves with 100% gamma-cyhalothrin, while moths did not adjust their oviposition behavior in response to spinetoram. Larvae from the single resistance DBM strain showed a significant increase in mobility in response to both insecticides and avoided insecticide-treated portions of leaves when given a choice. On the other hand, DBM larvae from the double resistance strain showed a significant decrease in mobility in response to insecticides, and they did not avoid insecticide-treated portions of leaves when given a choice. Our results suggest that pest populations with physiological resistance may show behavioral avoidance, as resistant females avoided oviposition on leaves without gamma-cyhalothrin. Thus, physiological resistance and behavioral avoidance do not appear to be controlled by the same selection pressures, and the mechanisms responsible for behavioral avoidance may vary among life stages. Our analysis also suggested that a population with lesser physiological resistance to insecticides may be under a stronger selection pressure and therefore be more likely to develop avoidance behaviors than a population with higher levels of physiological resistance.  相似文献   

9.
Laboratory-reared predators, the insidious flower bug, Orius insidiosus (Say), and big-eyed bug Geocoris punctipes (Say), were exposed to 10 insecticides, including three newer insecticides with novel modes of action, using a residual insecticide bioassay. These species are important predators of several economic pests of cotton. Insecticides tested were: azinphos-methyl, imidacloprid, spinosad, tebufenozide, fipronil, endosulfan, chlorfenapyr, cyfluthrin, profenofos, and malathion. There was considerable variation in response between both species tested to the insecticides. Tebufenozide and cyfluthrin were significantly less toxic to male O. insidiosus than malathion. Tebufenozide was also significantly less toxic to female O. insidiosus than malathion. Imidacloprid, tebufenozide, and spinosad were significantly less toxic to male G. punctipes than chlorfenapyr, endosulfan, and fipronil. Spinosad, tebufenozide, and azinphos-methyl were significantly less toxic to female G. punctipes than fipronil and endosulfan. Fecundity of O. insidiosus was significantly greater in the spinosad treatment compared with other treatments including the control. Consumption of bollworm, Helicoverpa zea (Boddie), eggs by O. insidiosus was significantly lower in the fipronil, profenofos, and cyfluthrin treatments compared with other treatments including the control. Consumption of H. zea eggs by G. punctipes was significantly lower in the malathion, profenofos, endosulfan, fipronil, azinphos-methyl, and imidacloprid treatments compared with the control. Egg consumption by G. punctipes was not significantly different in the tebufenozide treatment compared with the control. The lower toxicity of spinosad to G. punctipes is consistent with other reports. Based on these results, the following insecticides are not compatible with integrated pest management of cotton pests: malathion, endosulfan, profenofos, fipronil, and cyfluthrin; while imidacloprid, tebufenozide, azinphos-methyl, and spinosad should provide pest control while sparing beneficial species.  相似文献   

10.
The effect of the provision of pollen on the impact of pesticides on the predatory mite Kampimodromus aberrans was assessed at individual and population levels. In the laboratory we evaluated the influence of pollen amount and pollen application frequency on lethal and sub-lethal effects of chlorpyrifos and spinosad. In a potted plant experiment, the effects of pesticides and pollen were assessed on predatory mite population abundance. In the laboratory, survival and fecundity of predatory mites were reduced by insecticides, and spinosad was more toxic than chlorpyrifos. In the same experiment, high pollen application frequency alleviated the sub-lethal effect induced by chlorpyrifos. On potted plants, pollen applications reduced the impact of chlorpyrifos on K. aberrans, whereas without pollen applications the impact of spinosad and chlorpyrifos on the predatory mite population was similar. Results obtained here highlight that the provision of fresh pollen is of particular importance for predatory mites when pesticides are applied.  相似文献   

11.
The effect of temperature on activity of insecticides for controlling grasshoppers in leafy green vegetables was evaluated. Insecticides evaluated had differing modes of action and included diflubenzuron, azadirachtin, Beauveria bassiana, spinosad, endosulfan, esfenvalerate, and naled. We evaluated these insecticides for efficacy to third instars of differential grasshopper, Melanoplus differentialis (Thomas), at temperatures ranging from 10 to 35 degrees C. In the laboratory, treatment with esfenvalerate resulted in 100% mortality at temperatures of 10 to 35 degrees C, and efficacy was not temperature dependent. Treatment with spinosad resulted in similar mortality as with esfenvalerate at all temperatures except 10 degrees C. The activity of B. bassiana was greatest at 25 degrees C and was adversely affected by high and low temperatures. Treatment with diflubenzuron resulted in increased mortality at high temperatures, and at 35 degrees C its activity was similar to that of esfenvalerate and spinosad. The activity of azadirachtin ranged from 19 to 31% and was not influenced by temperature. In field studies, spinosad, diflubenzuron, and esfenvalerate provided differing levels of mortality both at application and when nymphs were exposed to 1-h-old residues. However, only spinosad and diflubenzuron provided similar levels of mortality when nymphs were exposed to 24-h-old residues. The residual activity of endosulfan, naled, esfenvalerate, and spinosad decreased with increasing time (0-24 h) after exposure to sunlight and high summer temperatures. Compared with other insecticides, naled had a short residual activity period and activity was dependent upon immediate contact with the nymphs or their substrate. B. bassiana was inactive under high temperatures and intense sunlight as occurs in summer.  相似文献   

12.
Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), infests many horticultural fruit crops in the eastern part of Australia. Farmers usually apply synthetic insecticides to control this pest. Little is known on the use of plant products especially vegetable oils for fruit fly control although they are considered to be safer than synthetic insecticides. In this study, safflower oil was investigated for its mechanism and effectiveness against female B. tryoni. In a laboratory test, safflower oil treatments (2.5 and 5.0 ml l?1) reduced the number of fly punctures on treated artificial fruits, no matter whether pre‐punctures were present or absent. Safflower oil treatments also reduced the number of fly landings and eggs laid, but only when the treated artificial fruits were without pre‐punctures. These results confirmed that safflower oil is active against female B. tryoni mainly by preventing this fruit fly from making oviposition punctures, not by discouraging them from depositing eggs or by repelling them. The slippery nature of safflower oil is considered to be responsible for a reduction in the susceptibility of artificial fruit to fruit fly punctures. Further investigation using fruit‐bearing tomato plants (a no‐choice test) in a glasshouse situation revealed that safflower oil application at concentrations of 10 and 15 ml l?1 reduced the number of oviposition punctures but failed to reduce the number of eggs laid. To increase efficacy of safflower oil under field conditions, multiple tools may be needed to reduce fruit fly populations and oviposition behaviour, such as the addition of trap‐crops, provision of artificial oviposition sites, or mixing the insecticides with the oil.  相似文献   

13.
Essential oils have shown good experimental potential as novel veterinary ectoparasiticides. However, if they are to be used as veterinary products, they must be available in formulations that are suitable for practical application against specific ectoparasites. Here, the efficacies of formulations containing 5% (v/v) lavender or tea tree oil, in combination with two emulsifiers [a surfactant, 5% (w/v) N‐lauroylsarcosine sodium salt (SLS), and a soluble polymer, 5% (w/v) polyvinylpyrrolidone (PVP)], with or without 10% coconut oil, were tested in contact bioassays against the donkey chewing louse Bovicola ocellatus (Piaget) (Phthiraptera: Trichodectidae). Residual activity was quantified in open and closed containers; ovicidal efficacy was also examined. Exposure to either of 5% (v/v) lavender or tea tree oils with SLS or PVP resulted in louse mortality of 100%, but when coconut oil was included as an excipient, significantly lower efficacy was recorded. However, the formulations became significantly less effective after 2 h in open containers and 40 h in closed containers. The results confirm that the residual activity of essential oils is relatively transitory and the addition of 10% coconut oil does not prolong the period of insecticidal activity by slowing essential oil evaporation. Too short a period of residual activity is likely to be a significant impediment to the effective practical use of essential oils. However, unlike many synthetic pediculicides, the essential oils tested here were highly ovicidal, which suggests that prolonged residual activity may not be essential to kill newly hatched nymphs after treatment.  相似文献   

14.
The effects of spinosad bait and various insecticides, the presence of sugar in insecticides, and diet on feeding responses and mortality in western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae), were determined. Numbers of feeding events on insecticides with sugar were greater than on insecticides alone, but there was only a small effect of diet on feeding responses to insecticides with sugar. Feeding durations on imidacloprid, thiamethoxam and acetamiprid with sugar were shorter than on sugar water and spinosad bait, as the neonicotinoids paralysed flies quickly. Flies that fed on sugar only (nitrogen‐starved) suffered higher mortalities when exposed to spinosad, thiamethoxam and azinphos‐methyl than to imidacloprid, acetamiprid and indoxacarb, and mortality in between these two groups of treatments when exposed to spinosad bait. Mortalities were greater when sugar was added to insecticides, and were higher in nitrogen‐starved than fully‐fed (yeast extract + sugar fed) flies. Flies that fed once on thiamethoxam were killed more quickly than those that fed once on spinosad bait and spinosad. Results suggest that thiamethoxam is comparable to spinosad in its effects on mortality, and that using it with sugar in bait may also have similar results as using spinosad bait or spinosad. One benefit of using thiamethoxam with sugar may be that it kills flies more quickly, before they can oviposit, than spinosad bait, although whether a fly will feed on it may depend on how much sugar or nitrogenous food it has eaten.  相似文献   

15.
Brown stink bug, Euschistus servus (Say), and green stink bug, Acrosternum hilare (Say) (Hemiptera: Pentatomidae), are major agricultural pests. Although various insecticides are used to control nymphs and adults, little is known about how they affect eggs. Laboratory bioassays and field trials were conducted to determine the efficacy of common field rates of acephate, lamda-cyhalothrin, spinosad, and thiamethoxam on developing E. servus and A. hilare eggs, as well as Telenomus podisi Ashmead (Hymenoptera: Scelionidae) parasitoids developing in E. servus eggs. In laboratory bioassays, egg masses were dipped into insecticide and water solutions and assessed for mortality after 2 wk. In the field trials, egg masses on a cloth section were pinned to leaves in each plot ofa randomized complete block and returned to the laboratory 24 h after exposure to insecticide sprays. Mortality was assessed after 2 wk. In dip bioassays, there was a significant effect of insecticide treatment on A. hilare eggs with all insecticides resulting in greater mortality than the water control. However, no effect of treatment occurred in the field with A. hilare or for E. serous eggs in both the laboratory bioassays and the field trials. In contrast, developing T. podisi parasitoids showed significant mortality when exposed to all insecticide treatments, when dipped or field-treated. Spinosad and lamda-cyhalothrin treatments resulted in 100% mortality of T. podisi, and acephate resulted in greater mortality than thiamethoxam. Our results suggest that there is relatively little efficacy from insecticide sprays on stink bugs developing in eggs but that mortality of egg parasitoids may be significant.  相似文献   

16.
The effect of insecticides on Trichogramma exiguum Pinto & Platner emergence, adult survival, and fitness parameters was investigated. Insecticides tested were lambda cyhalothrin, cypermethrin, thiodicarb, profenophos, spinosad, methoxyfenozide, and tebufenozide. All insecticides, with the exception of methoxyfenozide and tebufenozide, adversely affected Trichogramma emergence from Helicoverpa zea (Boddie) host eggs when exposed at different preimaginal stages of development (larval, prepupal, or pupal). Regardless of the developmental stage treated, none of the insecticides tested had a significant effect on the sex ratio or frequency of brachyptery of emerged females. However, the mean life span of emerged T. exiguum females significantly varied among insecticide treatments, and was significantly affected by the developmental stage of parasitoid when treated. Based on LC50 values, spinosad and prophenofos were the most toxic compounds to female T. exiguum adults, followed by lambda cyhalothrin, cypermethrin, and thiodicarb. Insecticides field-weathered for four to 6 d on cotton leaves showed no activity against female T. exiguum adults.  相似文献   

17.
Ten insecticides representing seven chemical groups were applied at various concentrations topically by using a Potter Spray Tower to evaluate their relative toxicities on the European wireworm Agriotes obscurus L. (Coleoptera: Elateridae). Wireworms were stored at 15 degrees C after exposure to organophosphate (OP) (chlorpyrifos, diazinon), pyrethroid (tefluthrin), thianicotinoid (thiamethoxam, clothianidin), chloronicotinoid (imidacloprid, acetamiprid), phenyl pyrazole (fipronil), organochlorine (lindane), and spinosyn (spinosad) insecticides, and their postapplication health was evaluated weekly for up to 301 d. LC50, LC90, LT50, and LT90 values were calculated for each chemical except acetamiprid, and compared with those of lindane, clothianidin, and chlorpyrifos. Wireworms exposed to OPs died or recovered more quickly (LT50 < 20 d, LT90 < 50 d), than those exposed to all other insecticides tested except tefluthrin (LT50 = 25.5 d, LT90 = 66.5 d). Wireworms exposed to sublethal concentrations of all neonicotinoids quickly became moribund after application but made a full recovery. Wireworms exposed to fipronil at concentrations near the LC90 value showed no intoxication symptoms for up to 35 d, and they did not recover after symptoms developed. For each chemical, increasing the concentration increased the time required for wireworms to recover but decreased the time required to kill wireworms. Fipronil was highly toxic to wireworms (LC50 = 0.0001%), but acetamiprid (LC50 = 1.82%), imidacloprid (LC50 = 0.83%), tefluthrin (LC50 = 0.23%), diazinon (LC50 = 0.54%), and spinosad (LC50 = 0.51%) were not. The toxicity of both clothianidin (LC50 = 0.07%) and thiamethoxam (LC50 = 0.17%) were similar to those oflindane (LC50 = 0.06%) and chlorpyrifos (LC50 = 0.10%).  相似文献   

18.
Effects of spinosad, spinosad bait, and the chloronicotinyl insecticides imidacloprid and thiacloprid on mortality of the adults and larvae of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), were determined in the laboratory and the field. Spinosad and spinosad bait caused higher adult mortality than imidacloprid, which caused higher mortality than thiacloprid. Only spinosad bait prevented oviposition. All materials were more toxic to adults when ingested than when topically applied. Spinosad bait had the greatest residual toxicity on leaves, killing 100% of adults when aged for 14 d in the field. When materials were sprayed on infested cherries, numbers of live larvae in fruit after 8 d were lower in imidacloprid and thiacloprid than in spinosad and spinosad bait treatments, which did not differ from the control, but all materials reduced larval emergence over 30 d. In the field, spinosad and spinosad bait were as effective in suppressing larval infestations as azinphos-methyl and carbaryl, whereas imidacloprid was effective in most cases and thiacloprid was generally less effective than azinphos-methyl and carbaryl. Overall, results in the laboratory and field show that spinosad and chloronicotinyl insecticides differed significantly in their effectiveness against adults and larvae of R. indifferens but that spinosad, spinosad bait, and imidacloprid seem to be acceptable substitutes for organophosphate and carbamate insecticides for controlling this fruit fly.  相似文献   

19.
Mineral oils have been historically favoured over plant oils for insect pest control in horticultural crops because of their greater efficacy. Recently the increased pressure for environmentally sustainable pest management strategies has renewed interest in the use of plant oils and also in the reasons for differences in efficacy between plant and mineral oils. Efficacy of canola and mineral oils were compared for two modes of action: asphyxia in control of Saissetia oleae on olives and as an oviposition deterrent in control of Phyllocnistis citrella on lemons. On olives both canola and mineral oil treatments significantly reduced the number of black scale in comparison to the control but mineral oil reduced the number of black scale significantly more than canola oil. When oils were applied to lemons as a preventative spray, concentrations of canola oil above 0.5% significantly reduced the number of P. citrella mines per leaf compared to the control and there were no significant differences between any concentration above 0.5% canola oil and 0.5% mineral oil. Canola oil applied at a concentration of 0.5% was significantly less effective than mineral oil applied at the same concentration. Efficacy of canola oil was found to be lower than that of mineral oil in all experiments, but the higher efficacy of mineral oil was more pronounced in suffocation of S. oleae than in deterrence of P. citrella oviposition. Our results indicate that even though canola oil has very different molecular structures than mineral oils the resulting physical characteristics of canola oil, primarily high boiling point and viscosity, may contribute to their lower efficacy against arthropod pests. However, low phytotoxicity of canola oil indicates that the chemical structure of molecules contained in canola oil had much more influence on processes on the plant surface than the physical characteristics of the oil.  相似文献   

20.
南京地区小菜蛾的抗药性检测及初步分析   总被引:11,自引:0,他引:11  
吴敏  韩召军  孟建业  朱斌 《昆虫学报》2005,48(4):633-636
利用浸叶法对南京郊区小菜蛾Plutella xylostella的抗药性进行了监测,发现其对拟除虫菊酯类药剂的抗性较高,而对氟虫腈、辛硫磷、毒死蜱、多杀菌素和虫酰肼依然处于敏感阶段。利用抗性小菜蛾测试发现,氧化胡椒基丁醚(增效醚,简称PBO)对拟除虫菊酯具有显著的增效作用。室内敏感性恢复实验表明,在不接触药剂的条件下,小菜蛾对拟除虫菊酯的抗性迅速下降,繁殖10代以后,抗性维持在低抗水平。因此, 小菜蛾的抗药性治理,应充分利用不同药剂的轮换使用,避免单一使用某一品种,以延缓抗性的发展,同时可以利用PBO增强拟除虫菊酯的防治效果,保证这类药剂在小菜蛾防治中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号