首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human gene encoding the mature form of bone morphogenetic protein-2 (hBMP-2), a dimeric disulfide-bonded protein of the cystine knot growth factor family, was expressed in recombinant Escherichia coli using a temperature-inducible expression system. The recombinant protein was produced in the form of cytoplasmic inclusion bodies and the effect of different variables on the renaturation of rhBMP-2 was investigated. In particular, variables such as pH, redox conditions, protein concentration, temperature, the presence of different types of aggregation suppressors, and host cell contaminants were studied with respect to their effect on aggregation during refolding and on the final renaturation yield of rhBMP-2. It is shown that the renaturation yield is particularly sensitive to pH, temperature, protein concentration, and the presence of aggregation suppressors. In contrast, little effect of the redox conditions and the ionic strength on the renaturation yield was observed, as equal yields were obtained in a broad range of reduced to oxidized glutathione ratios and concentrations of NaCl, respectively. The aggregation suppressor 2-(cyclohexylamino)ethanesulfonic acid (CHES) proved to be superior with respect to the final renaturation yield, although, in comparison to the more common arginine, it was less efficient in preventing aggregation of rhBMP-2 during refolding. Detergent washing of inclusion bodies was sufficient, as further purification of rhBMP-2 prior to refolding was without effect on the final renaturation yield. An increase in the concentration of renatured rhBMP-2 was achieved by a pulsed refolding procedure by which up to a total amount of 2.1 mg mL(-1) rhBMP-2 could be transferred in seven pulses into the renaturation buffer with an overall refolding yield of 38%, corresponding to 0.8 mg mL(-1) renatured dimeric rhBMP-2. Furthermore, a simplified purification procedure is presented that also includes freeze-drying for long-term storage of biologically active rhBMP-2. Finally, it is shown that the appearance of rhBMP-2 variants could be avoided by using a host strain overexpressing rare codon tRNAs.  相似文献   

2.
重组人骨形态发生蛋白-6的表达、纯化及其活性分析   总被引:3,自引:1,他引:3  
利用RT-PCR从人胎盘组织中获取BMP-6成熟肽的cDNA 片段,并克隆到表达载体pET-15b中, 构建hBMP_6成熟肽的非融合蛋白表达质粒pET-BMP6,转化E.coli BL21(DE3)。IPTG 诱导4h后,工程菌高表达rhBMP-6成熟肽,在SDS-PAGE上出现预期的新蛋白带(≈15kD), 约占菌体总蛋白的10%,表达产物以包涵体形式存在。分离和纯化的包涵体溶解于8 mol/L尿素,在变性溶解状态下经阳离子交换层析,得到目的蛋白纯度达95%以上。再经稀释复性后,约80%的rhBMP-6形成同源二聚体。体外活性分析结果显示:rhBMP-6可以提高C3H10T1/2 细胞碱性磷酸酶活性及促进I型胶原、Osterix(Osx)和骨钙素(Osteocalcin)等成骨细胞表型转化标记基因mRNA的表达,证明制备的rhBMP_6具有诱导非骨源性细胞分化成为成骨细胞的作用。  相似文献   

3.
Recombinant human bone morphogenetic protein-2 (rhBMP-2) was biotinated, and the bioactivity of biotinated protein was assessed in vitro (alkaline phosphate induction in limb bud cells) and in vivo (osteoinduction in the rat ectopic assay). Amino-biotinated rhBMP-2 exhibited an increase in bioactivity whereas carboxy-biotinated rhBMP-2 did not exhibit any changes in bioactivity in vitro. Avidin inhibited the bioactivity of amino-biotinated but not carboxyl-biotinated rhBMP-2. Both amino- and carboxy-modified rhBMP-2 induced bone at an equivalent level to that of unmodified rhBMP-2 in vivo. The presence of avidin did not affect the osteoinductive activity of both types of biotinated rhBMP-2. The overall results indicated that binding to a large protein, avidin, might affect rhBMP-2 activity in vitro depending on the binding site; however, in vivo activity was unaffected by the avidin binding.  相似文献   

4.
目的 在大肠杆菌中表达具有生物活性的rhBMP-4。方法 在不改变氨基酸序列的前提下,以全基因合成的方式对人BMP-4成熟肽基因全长进行定点突变,将之重组入pET-3c表达载体并转化至大肠杆菌BL21(DE)plysS。IPTG诱导和包涵体复性后,利用C2C12细胞横向成骨细胞分化实验以及小鼠肌袋异位骨形成实验检测其活性。 结果 获得0.348 kb的BMP-4 DNA序列,表达的目的蛋白主要以包涵体的形式存在。经纯化及复性后,体内与体外的活性检测表明rhBMP-4有良好的诱骨生成活性。结论 该方案能够实现rhBMP-4在大肠杆菌中的高效表达。  相似文献   

5.
Codons in the open reading frame (ORF) encoding for human bone morphogenetic protein-2 (hBMP-2) were optimized to reach high level expression in Escherichia coli. The optimization was done by the computer programs DNA works and DNA Star according to Thermodynamically Balanced Inside Out (TBIO) approach. The ORF consisting of 342 base pairs (bp) was assembled using two-steps Polymerase Chain Reaction, cloned into a pGEM-T vector with a mutation rate of 6.38 bp per kb and transformed into E. coli JM109. After a DNA sequence confirmation, mutation-free ORF was subcloned into pET32b and transformed into E. coli BL21(DE3). The rhBMP-2 was produced as a thioredoxin-his-tag fusion protein at relatively high level, approximately 60% of total intracellular proteins as inclusion bodies (IB), with a yield of 1.39 g per liter culture. Solubilization of IB gave soluble monomer rhBMP-2 with a recovery of 13.6% and refolding of soluble rhBMP-2 produced dimeric forms with a yield of 8.7%. The size and identity of the purified rhBMP-2 was confirmed by nano-LC-MS/MS2 analysis. Our work demonstrates for the first time that by using TBIO approach, a codon-optimized ORF encoding for rhBMP-2 protein can be expressed at high level in E. coli expression system.  相似文献   

6.
A prokaryotic expression system has been used to produce recombinant human bone morphogenetic protein-2 (rhBMP-2). However, low rhBMP-2 yields and protein loss during purification and renaturation are the hurdles in the clinical application. Previous studies have indicated that variables such as temperature, host cell, salt concentration, and culture time affect the final rhBMP-2 yield. The optimization of these conditions in an Escherichia coli culture yielded 28.258 mg of rhBMP-2 per liter of culture. To reduce rhBMP-2 loss during purification and renaturation, we performed purification before renaturation in the prokaryotic expression system instead of using the traditional renaturation-before-purification approach. rhBMP-2 was separated on a Sephacryl S-300 HR column and eluted from a DEAE-Sepharose Fast Flow column. The collected protein was refolded by dialysis with urea buffer, which was followed by dialysis with ultrapure water. The purified rhBMP-2 dimer significantly increased alkaline phosphatase (ALP) activity and osteogenic activity in the femoral muscle and showed the same level of bone-forming activity as natural BMP-2. This optimized procedure for expression and renaturation of rhBMP-2 has potential clinical applications.  相似文献   

7.
目的:研究表达重组人骨形态发生蛋白-7工程菌的发酵和表达产物的纯化工艺。方法:利用16L发酵罐发酵培养工程菌,设定了溶氧、搅拌速度、诱导时机、补料和培养基pH值等发酵条件;通过包涵体洗涤、离子交换层析法纯化目的蛋白。结果:工程菌目的蛋白质表达量占菌体总蛋白质的30%以上,纯化后目的蛋白的纯度可达98%。结论:建立了大肠杆菌高效表达人骨形态发生蛋白-7的发酵及纯化工艺。  相似文献   

8.
重组大肠杆菌高量表达重组人骨形态发生蛋白-7(rhBMP-7),每升培养液约得到湿菌体3g,其中目的蛋白约占菌体总蛋白量的40%。裂解离心,用低浓度变性剂洗涤初步纯化包涵体,上清中无目的蛋白损失;将包涵体溶解于高浓度变性剂溶液中,目的蛋白纯度提高到60%;然后在不同条件下用离子交换色谱法对变性状态下的蛋白质进行纯化,绝大部分杂蛋白被除去,目的蛋白纯度达95%以上;改变条件,可以减少rhBMP-7损失;用Western blot对目的蛋白进行特异性鉴定。  相似文献   

9.
10.
The bone marrow microenvironment provides a unique opportunity in vivo to assess the role of genes in bone remodeling. The objective of this study was to determine whether Runx2 expression is regulated by rhBMP-2 in vivo and to examine the effect of Runx2 overexpression on bone in vivo. In the in vivo calvaria model we used, rhBMP-2 induced Runx2 protein expression in periosteal cells while in vitro, adenovirus-mediated Runx2 overexpression induced mineralization in mesenchymal stem cells. A single injection of adeno-Runx2 directly into the bone marrow of the right femur in mature rats, and subsequent analysis after 3 weeks, showed a significant bone mineral density (BMD) increase ( approximately 15%) as compared to the controls. The whole-femur mean BMD of the active virus-injected group was 0.193 (g/cm(2)) while that of the control virus-injected group was 0.175 (g/cm(2)) (P < 0.05). In addition, a significant increase (36%) in trabecular BMD at the distal end of the femur was observed. These data demonstrate that directly delivering adeno-Runx2 into bone marrow of adult rats induces osteogenesis and illustrates potential advantages of such approaches over ex vivo gene therapy protocols involving marrow cell isolation, gene transduction, and subsequent in vivo transfer.  相似文献   

11.
构建真核表达载体pCDNA3.1( )-hBMP-2,与质粒pSV2-dhfr共转染CHO-dhfr-细胞,以含有700μg/mLG418的IMDM进行选择性培养,筛选抗性克隆,并用MTX扩增,提高rhBMP-2的表达量。收集的rhBMP-2蛋白进行Westernblot检测,还原蛋白样品电泳产生一条大小约为18kD的特异性条带,非还原蛋白样品电泳产生一条大小约为30kD的特异性条带,提示表达的rhBMP-2是经过糖基化修饰的,且以同源二聚体形式分泌表达。单细胞分离培养得到14株rCHO(hBMP-2)单克隆细胞株,ELISA法检测rhBMP-2表达水平,最高可达7.83μg/24h/106cells。活性分析结果表明,表达的rhBMP-2具有很强的生物学活性。  相似文献   

12.
Abstract: An increasing body of evidence suggests that in plants, as in vertebrates, biologically active natriuretic peptide (NP) hormones play an important role in the regulation of the osmotic and ionic balance. The evidence includes isolation and immunoaffinity purification of biologically active natriuretic peptide analogues (irPNP) from ivy that promoted stomatal opening and specifically, rapidly and transiently increased cGMP levels in root conductive tissue. In this study we demonstrate that I125-rat atrial natriuretic peptide (rANP) binds to plasma membranes from leaf and stem tissue of Tradescantia multiflora and importantly, both unlabelled rANP and irPNP can competitively displace that binding. In addition, tissue section autoradiography reveals specific in situ binding of I125-rANP to leaf and stem tissue. The findings are consistent with the presence of a biologically active NP system in plants and suggest that NPs signal through a dedicated receptor system.  相似文献   

13.
In this work, the recombinant human bone morphogenetic protein 2 (rhBMP-2) gene was cloned from MG-63 cells by RT-PCR, and the protein was expressed in Escherichia coli expression system, purified by Ni–NTA column under denaturing conditions and refolded at 4 °C by urea gradient dialysis. We found that the protein refolding yield was increased with the increase of pH value from pH 6.0 to pH 9.0. The yield was 42% and 96% at pH 7.4 and pH 9.0, respectively, while that at pH 6.0 was only 3.4%. The cell culture results showed that the rhBMP-2 refolded at pH 7.4 urea gradient dialysis had higher biological activity for MG-63 cell proliferation and differentiation than that refolded at pH 9.0 since pH 7.4 is closer to the conditions in vivo leading to the formation of dimers through the interchain disulfide bond. Moreover, the biological activity for MG-63 was promoted with the increase of rhBMP-2 concentration in the cell culture medium. This work may be important for the in vitro production and biomedical application of rhBMP-2 protein.  相似文献   

14.
15.
A six-His peptide was genetically engineered to the C-terminus of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase monomer to facilitate the protein purification with immobilized metal affinity chromatography (IMAC). The fusion enzyme, named as DCaseH, was overexpressed in Escherichia coli and one-step IMAC-purified. The production study showed that DCaseH was optimally produced at 15 degrees C for 25 h by the induction of 0.05 mM IPTG. Both Co(2+)-chelated TANOL gels and Ni(2+)-chelated nitriloacetic acid agarose gels efficiently purified DCaseH, with the former yielding purer enzyme than the latter. Highly pure DCaseH was obtained in the former purification with the addition of 5 mM imidazole in the washing buffer, and the specific enzyme activity was increased more than 11-fold. Denaturing IMAC purification successfully purified DCaseH from inclusion bodies that were mostly composed of the overexpressed DCaseH, while the attempt to refold the purified enzyme by either dialysis or solid-state refolding was not achieved. The purified native enzyme was optimally active at pH 6.5 and 50 degrees C, and the presence of 10% glycerol increased the activity. The molecular modeling of dimeric DCaseH indicated that the six-His tags were freely exposed to the protein surface, resulting in the selective and effective IMAC purification of DCaseH.  相似文献   

16.
Considering the design and development of biomaterials used in tissue engineering, not only is it important that they are biocompatible but also that they induce the desired cellular response for tissue regeneration. Chitosan, a biocompatible and bioresorbable polymer of N-acetylglucosamine and glucosamine is used in our work combined with recombinant human BMP-2 (rhBMP-2), a potentially useful activation factor for bone repair. In this way, we try to combine the biological and filmogenic properties of this biopolymer with the osseoinductive ability of the rhBMP-2. Results showed that the chitosan films employed, without and with rhBMP-2 activation, are able to support cellular growth and proliferation on them and that only the rhBMP-2 activated ones are able to differentiate from a myoblastic mouse cell line (C2C12) toward osteoblastic phenotype. Osseoinduction properties of rhBMP-2 activated films persist for a long storage time. The in vivo experiments performed confirm the expectative created by the in vitro results obtained and are an indication that rhBMP-2 activated chitosan films could be a very attractive biomaterial for the enhancement of osseointegration of surgical prostheses and implants and for the purpose of tissue engineering bone regeneration.  相似文献   

17.
Many bioactive molecules like recombinant human bone morphogenetic protein 2 (rhBMP-2) have been developed for mineralized bone grafts, for which proper scaffolds are necessary to successfully apply the bioactive molecules. In this study, we tested the osteogenic efficacy of rhBMP-2 produced in-house in combination with gelatin sponge as the scaffold carrier in a rabbit radial defect model. The efficacy of the rhBMP-2 was determined by alkaline phosphatase activity assay of C2C12 cells. Two groups of ten rabbits each were treated with rhBMP-2/gelatin sponge, or gelatin sponge only. At 4 weeks, rhBMP-2/gelatin sponge grafts showed more bone regeneration than gelatin sponge grafts, as determined by X-ray radiography, micro-computed tomography, and histological analyses. At 8 weeks, rhBMP-2/gelatin sponge grafts exerted much stronger osteogenic effects. The study demonstrates the improved osteogenic efficacy of the rhBMP-2/gelatin sponge grafts in a rabbit radial bone defect model acting as a bone-inductive material. [BMB Reports 2013; 46(6): 328-333]  相似文献   

18.
A novel biomimetic bone scaffold was successfully prepared in this study, which was composed of calcium sulfate hemihydrate (CSH), collagen and nano-hydroxyapatite (nHAC). CSH/nHAC was prepared and observed with scanning electron microscope and rhBMP-2 was introduced into CSH/nHAC. The released protein content from the scaffold was detected using high performance liquid chromatography at predetermined time interval. In vivo bone formation capacity was investigated by means of implanting the scaffolds with rhBMP-2 or without rhBMP-2 respectively into a critical size defect model in the femoral condyle of rabbit. The releasing character of rhBMP-2 was that an initial burst release (37.5%) was observed in the first day, followed by a sustained release and reached 100% at the end of day 20. The CSH/nHAC showed a gradual decrease in degradation with the content of nHAC increase. The results of X-rays, Micro CT and histological observation indicated that more new bone was formed in rhBMP-2 group. The results implied that this new injectable bone scaffold should be very promising for bone repair and has a great potential in bone tissue engineering.  相似文献   

19.
The use of bacterial signal peptides to target recombinant mammalian proteins to the periplasmic space of Escherichia coli (to promote proper disulfide bond formation) has met with variable success. We report the design and use of a bacterial expression vector to direct recombinant fusion proteins to the periplasmic space of E. coli: it contains the signal peptide from the pelB gene of Erwinia carotovora linked to a small peptide epitope for an unusual calcium-dependent antibody (HPC4). HPC4 binds to the epitope in a Ca(2+)-dependent manner, but the epitope itself does not bind Ca2+. We have used this system to express a biologically active, soluble form of tissue factor, the protein responsible for triggering the blood clotting cascade. Soluble tissue factor was secreted into the culture medium at 1-2 mg/liter, from which it could be readily purified using immobilized HPC4 antibody. The HPC4 epitope could be removed by digestion with thrombin or factor Xa, although a free amino terminus was not required for function since soluble tissue factor was equally active with the epitope still in place. This vector/epitope system permits large-scale expression and purification of recombinant soluble tissue factor and should be generally applicable to the isolation of other recombinant proteins. Furthermore, the epitope confers Ca(2+)-dependent binding of the fusion protein to HPC4 antibody while avoiding the creation of a new metal binding site on the fusion protein itself. Tb3+ can bind in this Ca2+ site near Trp, allowing this site to serve as a means of attaching a fluorescent probe to tissue factor.  相似文献   

20.
The EAL domain (also known as domain of unknown function 2 or DUF2) is a ubiquitous signal transduction protein domain in the Bacteria. Its involvement in hydrolysis of the novel second messenger cyclic dimeric GMP (c-di-GMP) was demonstrated in vivo but not in vitro. The EAL domain-containing protein Dos from Escherichia coli was reported to hydrolyze cyclic AMP (cAMP), implying that EAL domains have different substrate specificities. To investigate the biochemical activity of EAL, the E. coli EAL domain-containing protein YahA and its individual EAL domain were overexpressed, purified, and characterized in vitro. Both full-length YahA and the EAL domain hydrolyzed c-di-GMP into linear dimeric GMP, providing the first biochemical evidence that the EAL domain is sufficient for phosphodiesterase activity. This activity was c-di-GMP specific, optimal at alkaline pH, dependent on Mg(2+) or Mn(2+), strongly inhibited by Ca(2+), and independent of protein oligomerization. Linear dimeric GMP was shown to be 5'pGpG. The EAL domain from Dos was overexpressed, purified, and found to function as a c-di-GMP-specific phosphodiesterase, not as a cAMP-specific phosphodiesterase, in contrast to previous reports. The EAL domains can hydrolyze 5'pGpG into GMP, however, very slowly, thus implying that this activity is irrelevant in vivo. Therefore, c-di-GMP is the exclusive substrate of EAL. Multiple-sequence alignment revealed two groups of EAL domains hypothesized to correspond to enzymatically active and inactive domains. The domains in the latter group have mutations in residues conserved in the active domains. The enzymatic inactivity of EAL domains may explain their coexistence with GGDEF domains in proteins possessing c-di-GMP synthase (diguanulate cyclase) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号