首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation postharvest phytosanitary treatments are used increasingly and show further promise because of advantages compared with other treatments. Its chief disadvantage is that, unlike all other commercially used treatments, it does not provide acute mortality, although it prevents insects from completing development or reproducing. The objective of this research was to determine to what extent irradiated egg and early instars of tephritids would develop to later instars that could be found by phytosanitary inspectors or consumers. Mexican fruit fly, Anastrepha ludens (Loew), eggs and first instars in grapefruit, Citrus paradisi Macfayden, were irradiated with 70-250 Gy and held at approximately equal to 27 degrees C until third instars completed development. The accepted minimum absorbed phytosanitary dose for this pest is 70 Gy, although higher doses may be applied under commercial conditions. The more developed a fruit fly before it was irradiated, the greater the proportion that survived to the third instar. Also, dose was inversely related to developmental success, e.g., a mean of approximately 65 and 35%, respectively, of late first instars reached the third instar when irradiated with 70 and 250 Gy. Of those, 65.1 and 23.4%, respectively, pupariated, although no adults emerged. Irradiation may result in a greater frequency of live (albeit incapable of resulting in an infestation) larvae being found than would be expected compared with other treatments that provide acute mortality. The regulatory community should be aware of this and the fact that it does not increase the risk of irradiation phytosanitary treatments resulting in an infestation of quarantine pests.  相似文献   

2.
The effects of methyl bromide (MB) concentration (16, 32,48, or 64 g/m3), fumigation temperature (15, 20, 25, or 30 degrees C), and fumigation time interactions on the survival of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), eggs and first and third instars were recorded. Increasing the fumigation temperature from 15 to 20 degrees C or from 20 to 25 degrees C resulted in a significant reduction in fumigation time required for equivalent egg and larval mortalities at all studied MB concentrations; no further reductions in fumigation time resulted from increasing the temperature from 25 to 30 degrees C. Conversely, increasing temperature and time allowed for a reduction in MB concentration to obtain equivalent mortality. Thus, the optimum fumigation temperature for Mediterranean and oriental fruit fly eggs and larvae was 25 degrees C. Reducing MB concentrations required for phytosanitary fumigations would save time and expense, and reduce the amount of MB released into the atmosphere during aeration. Mediterranean fruit fly was as or more tolerant to MB than oriental fruit fly in MB tolerance for eggs and first instars. The egg stage was generally more tolerant to MB regardless of concentration. However, Mediterranean fruit fly eggs showed similar tolerance to first instars at 25 degrees C for the three highest concentrations and to third instars at 25 and 30 degrees C for the highest concentration, with no significant difference between them. Therefore, eggs alone can be used to obtain MB fumigation efficacy and quarantine security data at fumigation temperatures between 15 and 30 degrees C for Mediterranean and oriental fruit fly.  相似文献   

3.
Mexican fruit fly, Anastrepha ludens (Loew), is a quarantine pest of several fruit, including citrus, avocados, and mangoes, from extreme southern Texas to Costa Rica. To provide information for modeling heat phytosanitary treatments, third instars were heated with an aluminum heating block between 44 and 50 degrees C for time intervals up to those causing 100% mortality. At 44 and 50 degrees C, 100% mortality was achieved at 100 and 2 min, respectively. Each 2 degrees C increase in temperature resulted in a three-fourths reduction in the amount of time required to achieve 100% mortality. Mortality was modeled using thermal death kinetics, and the most suitable reaction order was the 0.5th. The thermal death activation energy was 560.7 kJ/mol, which is very similar to the value found for Mediterranean fruit fly, Ceratitis capitata (Wiedemann), in a previous study, indicating similar modes of action for heat mortality. However, the Mexican fruit fly had a lower threshold for heat-induced mortality, resulting in less time at all temperatures studied to achieve 100% mortality compared with the Mediterranean fruit fly. This type of information being gathered for fruit flies could lead to the development of generic phytosanitary heat treatments, which are available for other major phytosanitary treatments, such as cold storage, methyl bromide fumigation, and ionizing irradiation.  相似文献   

4.
Anastrepha serpentina (Wiedemann) (Diptera: Tephritidae) is sporadically captured in the Rio Grande Valley of Texas. Although its preferred hosts are in the Sapotaceae family, several varieties of Citrus, including grapefruit and oranges are listed as alternate hosts. Although Mexican fruit fly, Anastrepha ludens (Loew), is known to be a major pest of Citrus, doubt exists as to the status of Citrus as a breeding host for A. serpentina. To evaluate the host status of commercial Citrus for A. serpentina we compared oviposition and development with that of A. ludens under laboratory conditions with 'Rio Red' grapefruit (Citrus paradisi MacFayden) and 'Valencia' oranges [Citrus sinensis (L.) Osbeck] in different stages of maturity. Both fly species oviposited in early season fruit in which the eggs and larvae died in the fruit albedo. Survival of either species to the adult stage occurred in later season grapefruit. In oranges, no A. serpentina larvae survived compared with 150 A. ludens surviving to adults. Survival on both Citrus species was much lower for A. serpentina, only approximately 5% of eggs eclosed into larvae in grapefruit compared with approximatley 50% for A. ludens. In oranges approximately 16% of A. serpentina eggs eclosed compared with approximately 76% for A. ludens. In grapefruit, only one fourth as many A. serpentina larvae survived to the adult stage compared with A. ludens. Additional experiments were performed in a greenhouse on small, caged trees of la coma (Sideroxylon celastrinum H.B.K.), a Texas species of Sapotaceae. The A. serpentina females readily oviposited into these berries and normal adults emerged. The present low incidence of the adults, coupled with the high mortality during development of the larvae, suggests that Texas citrus is unlikely to support a breeding population of A. serpentina.  相似文献   

5.
Codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are serious pests of apples (Malus spp.) grown in the United States and other countries. In countries where these species are not found, there are strict quarantine restrictions in place to prevent their accidental introduction. The treatment used in this study consisted of hot, forced, moist air with a linear heating rate of 12 degrees C/h to a final chamber temperature of 46 degrees C under a 1% oxygen and 15% carbon dioxide environment. We found that the fourth instar of both species was the most tolerant to the treatment, with equal tolerance between the species. Efficacy tests against the fourth instar of both oriental fruit moth and codling moth by using a commercial controlled atmosphere temperature treatment system chamber resulted in > 5,000 individuals of each species being controlled using the combination treatment. Confirmation tests against codling moth resulted in mortality of > 30,000 fourth instars. These treatments may be used to meet quarantine restrictions for organic apples where fumigation with methyl bromide is not desirable.  相似文献   

6.
Two high-temperature, forced air treatments under controlled atmosphere conditions, called CATTS for controlled atmosphere/temperature treatment system, were developed for control of all life stages of codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), infesting peaches and nectarines (both Prunus spp.). These treatments were used in efficacy and confirmation tests to kill > 5,000 fourth instar oriental fruit moths and > 30,000 fourth instar codling moths with zero survivors. The treatments consist of linear heating rates of either 12 or 24 degrees C/h to a final chamber temperature under a 1% O2, 15% CO2, and > 90% RH atmosphere with air speed between 1.2 and 2.0 m/s. At a 12 degrees C linear chamber heating rate, treatment takes approximately 3 h to reach a final chamber temperature of 46 degrees C. The average lowest core temperatures of the fruit reached 43.8 degrees C within the last 30 min of the treatment. At a 24 degrees C linear chamber heating rate, it takes approximately 2.5 h to reach a final chamber temperature of 46 degrees C. The average lowest core temperatures of the fruit reached 44.6 degrees C for the last 15 min of the treatment. It also was determined that both treatments did not significantly alter the quality parameters that were evaluated to a degree that would have negatively influenced the marketability of the fruit. Positive benefits of treatment included a slower ripening of treated fruit and an inhibition of the loss of juiciness during storage in some cultivars. These treatments may be used to replacement to methyl bromide fumigation for conventional fruit or as a new treatment for organic fruit contingent upon importing country approval.  相似文献   

7.
Anastrepha fraterculus (Wiedemann) is recognized as a pest of citrus, apples, and blackberries in South America. In Mexico, it is mainly found in fruit of the family Myrtaceae and has never been reported infesting citrus. Here, we sought to determine whether females stemming from Mexican A. fraterculus populations (collected in the state of Veracruz) would lay eggs in 'Valencia' oranges and 'Ruby Red' grapefruit and, if so, whether larvae would hatch and develop. We worked under laboratory and seminatural conditions (i.e., gravid females released in fruit-bearing, bagged branches in a commercial citrus grove) and used Anastrepha ludens (Loew), a notorious pest of citrus, as a control species. Under laboratory conditions, A. ludens readily accepted both oranges and grapefruit as oviposition substrates, but A. fraterculus rarely oviposited in these fruit (but did so in guavas, a preferred host) and no larvae ever developed. Eggs were deposited in the toxic flavedo (A. fraterculus) and nontoxic albedo (A. ludens) regions. Field studies revealed that, as was the case in the laboratory, A. fraterculus rarely oviposited into oranges or grapefruit and that, when such was the case, either no larvae developed (oranges) or of the few (13) that developed and pupated (grapefruit), only two adults emerged that survived 1 and 3 d, respectively (5-17% of the time necessary to reach sexual maturity). In sharp contrast, grapefruit exposed to A. ludens yielded up to 937 pupae and adults survived for >6 mo. Therefore, the inability of Mexican A. fraterculus to successfully develop in citrus renders the status of Mexican A. fraterculus as a pest of citrus in Mexico as unsubstantiated.  相似文献   

8.
Carposina niponensis Matsumura (Lepidoptera: Carposinadae), is widely distributed in pome fruit production areas in China and presents a problem in some export markets because it is considered a quarantine pest by some countries. Methyl bromide is the only fumigant used for fumigation of apples (Malus spp.) for export. However, phosphine is a candidate replacement that can be applied directly at low temperature. Here, laboratory tests showed that tolerance of different stages of C. niponensis to phosphine fumigation at 0 degrees C differed greatly; first-second-instar larvae were the least tolerant stage and the mature fifth instars were the most tolerant stage. In the mature larvae, fumigation tests, with a range of phosphine concentrations from 0.42 to 1.95 mg/liters and exposure periods of 24 h to 14 d at 0 degrees C indicated narcosis when phosphine concentration was > or = 1.67 mg/liter and that a 15.52-8.14-d fumigation period was required to achieve 99% mortality with different phosphine concentrations. The expression of C(0.7)T = k was obtained, which indicated that exposure time was much more important than concentration of phosphine in mortality of mature larvae of C. niponensis. All results suggested that phosphine fumigation at low temperature offers promising control of C. niponensis infestation in pome fruit.  相似文献   

9.
The developmental thresholds for Marmara gulosa Guillén & Davis (Lepidoptera: Gracillariidae) were investigated in the laboratory by using 17, 21, 25, 29, and 33 degrees C. The lowest mortality occurred in cohorts exposed to 25 and 29 degrees C. Other temperatures caused >10% mortality primarily in egg and first and second instar sap-feeding larvae. Linear regression analysis approximated the lower developmental threshold at 12.2 degrees C. High mortality and slow developmental rate at 33 degrees C indicate the upper developmental threshold is near this temperature. The degree-day (DD) model indicated that a generation requires an accumulation of 322 DD for development from egg to adult emergence. Average daily temperatures in the San Joaquin Valley could produce up to seven generations of M. gulosa per year. Field studies documented two, five, and three overlapping generations of M. gulosa in walnuts (Juglans regia L.; Juglandaceae), pummelos (Citrus maxima (Burm.) Merr.; Rutaceae), and oranges (Citrus sinensis (L.) Osbeck; Rutaceae), for a total of seven observed peelminer generations. Degree-day units between generations averaged 375 DD for larvae infesting walnut twigs; however, availability of green wood probably affected timing of infestations. Degree-day units between larval generations averaged 322 for pummelos and 309 for oranges, confirming the laboratory estimation. First infestation of citrus occurred in June in pummelo fruit and August in orange fruit when fruit neared 60 mm in diameter. Fruit size and degree-day units could be used as management tools to more precisely time insecticide treatments to target the egg stage and prevent rind damage to citrus. Degree-day units also could be used to more precisely time natural enemy releases to target larval instars that are preferred for oviposition.  相似文献   

10.
Immersion of litchi fruit in 49 degrees C water for 20 min followed by hydrocooling in ambient (24 +/- 4 degrees C) temperature water for 20 min was tested as a quarantine treatment against potential infestations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); and oriental fruit fly, Bactrocera dorsalis Hendel, eggs or larvae in Hawaiian litchi, Litchi chinensis Sonnerat. The 49 degrees C hot-water immersion of litchi provided probit 9 (99.9968% mortality with >95% confidence) quarantine security against eggs and first instars. There were no survivors from 15,000 each feeding and nonfeeding Mediterranean fruit fly or oriental fruit fly third instars immersed in a computer-controlled water bath that simulated the litchi seed-surface temperature profile during the 49 degrees C hot-water immersion treatment. Litchi served as the model for longan, Dimocarpus longan Lour., a closely related fruit that is smaller and also has commercial potential for Hawaii. Modified fruit infestation and holding techniques used to obtain adequate estimated treated populations from poor host fruit, such as litchi and longan, are described. Data from these experiments were used to obtain approval of a hot-water immersion quarantine treatment against fruit flies for litchi and longan exported from Hawaii to the U.S. mainland.  相似文献   

11.
To develop a cold disinfestation treatment for the fruit fly Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) that is rapidly spreading across Africa, research was conducted in Nairobi, Kenya, using flies from a laboratory culture and 'Valencia' orange (Citrus sinensis L. Osbeck) as the host. The developmental rate of B. invadens in Valencia oranges was determined at 28 degrees C, and the third instar was found to be the least susceptible of the egg and larval life stages to cold treatment at 1.1 degrees C in oranges. When 22,449 B. invadens third instars were exposed in oranges to a cold treatment with an approximate midpoint of 1.1 +/- 0.5 degrees C, the results suggested that a period of 16 d would be worthwhile verifying on a larger scale in oranges. Results from the first replicate of 16,617 larvae showed no survivors, but the second replicate of 23,536 larvae had three survivors. Because a longer cold treatment based on a mean temperature of 1.1 degrees C would create logistical difficulties for some export markets, further replicates were conducted at an approximate midpoint of 0.5 degrees C and at mean hourly maximum of 0.9 +/- 0.5 degrees C, for 16 d. After three replicates, in which 65,752 B. invadens third instars in total were treated with no survivors, the Japanese requirement of 99.99% mortality at the 95% confidence level was surpassed. The following treatment protocol for B. invadens larvae in oranges can therefore be recommended: fruit pulp to be maintained at temperatures of 0.9 degrees C or lower for 16 consecutive days.  相似文献   

12.
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.  相似文献   

13.
Commercially ripe 'Hass' avocados, Persea americana Mill, artificially exposed to wild Anastrepha ludens (Loew) (Diptera: Tephritidae) females 24 h after harvest were placed in a cold storage facility to determine the effect of low temperature on larval survival and adult viability. Fruit were left for 3, 6, 9, and 12 d in a cold room at 5 degrees C followed by a 20-25-d period at ambient temperature to allow for larval development and pupation. Hass avocados and grapefruit, Citrus paradisi Macfadyen, maintained at ambient temperature served as controls. Overall, only 0.23% of the Hass avocados and 19.30% of the grapefruit were infested. The number of infested fruit increased with decreasing exposure time to cold. Puparia from cold-treated Hass avocados were significantly smaller than those stemming from cold-treated grapefruit. Hass avocados exposed for 12 d to 5 degrees C yielded no puparia, and those exposed for 6 and 9 d yielded 22 and two puparia, respectively, but no adults. Although Hass avocados exposed to cold temperature for 3 d yielded adults that reached sexual maturity (N = 16), females laid inviable eggs. Grapefruit exposed to cold for 12 d yielded normal-sized puparia (but no adults), whereas those exposed over 9 d yielded females able to lay viable eggs. We conclude that exposing fruit to cold storage after packing and during transport represents an effective risk-mitigating procedure in the highly improbable event that a gravid A. ludens female might lay eggs in a commercially ripe Hass avocado that had been left unprotected in a packinghouse.  相似文献   

14.
Mangoes infested with third instar larvae were irradiated using Co-60 gamma rays and a dose interval of 2-250 Gy to assess the irradiation dose required to prevent adult emergence of the Mexican fruit fly (Anastrepha ludens), the West Indies fruit fly (A. obliqua), the sapote fruit fly (A. serpentina), and the Mediterranean fruit fly (Ceratitis capitata). Doses of 76.9, 87.3, 91.4 and 112.7 Gy, were estimated to inhibit 99.9968% (probit 9) of adult emergence forA. obliqua, A. serpentina, A. ludens, and C. capitata, respectively. Using mangoes infested with a total of 100,000 larvae of each species, the results obtained in the laboratory were confirmed using a dose of 100 Gy for the Anastrepha species and 150 Gy for C. capitata. No adult emergence was observed for any of the four species compared with approximately 80% emergence in the controls. A dose of 150 Gy is recommended as a generic quarantine treatment against potential infestation of these species in exported mangoes. A minor decrease in the ascorbic acid content was the only adverse effects observed in irradiated mangoes.  相似文献   

15.
South Africa currently exports fresh citrus (Citrus spp.) fruit to Japan using an in-transit cold treatment protocol of 14 d or 12 d at temperatures <0 degrees C for treatment of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) in 'Clementine' mandarins (Citrus reticulata Blanco) and other citrus types, respectively. To reduce the risk of chilling injury with this treatment, research was conducted with temperatures >0 degrees C. Earlier South African research had shown that young (6-d-old) larvae were slightly more tolerant of cold treatment and that there were no significant differences between cold tolerance of these larvae in different citrus types [oranges, Citrus sinensis (L.) Osbeck; grapefruits, Citrus paradisi Macfad.; lemons, Citrus limon (L.) Burm.f.; and mandarins). Due to their ready availability, 'Valencia' oranges were used in this study. When 62,492 larvae in total were treated in three replicates at a mean temperature of 1.5 degrees C for 16 d, there were three larval survivors. The trial was therefore repeated with oranges using a 16-d period at a mean temperature of 1.0 degrees C and a mean of 1.4 degrees C for the hourly maximum probe readings. Three replicates were again conducted and the resultant mean mortality in the control was 8.1% of 21,801 larvae, whereas the cold treatment mortality was 100% of 71,756 larvae. This treatment at a mean temperature of 1 degree C exceeded the Japanese confidence level requirement and also exceeded the Probit-9 mortality level, but not at a confidence level of 95%. These data support the establishment of a treatment protocol of 16 d at temperatures <1.4 degrees C, commencing once all fruit pulp probes reach a temperature of 1 degree C or lower.  相似文献   

16.
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), was probably introduced into the United States from China with solid wood packing and dunnage during the 1980s, and it has recently become established in limited infestations near several major cities in the United States. Regulated wood packing material (RWPM) arriving in the United States from China is required to undergo fumigation with methyl bromide (MeBr), to be heat treated, or kiln dried. Sulfuryl fluoride (SF) is a candidate fumigant to replace MeBr under certain conditions. SF fumigations were conducted in 432-liter Lexan chambers held in a 6.1-m (20-foot) refrigerated container for temperature control. Each fumigation consisted of 12 Populus spp. 10- by 10- by 115-cm timbers, of high moisture content, naturally infested with Asian longhorned beetle. During 2001, we fumigated wood for 24 h at a range of doses (20-112 g/m3) and temperatures (4.4, 10.0, 15.6, and 21.1 degrees C) and subjected the data to probit analysis. Confirmatory fumigations were conducted at doses of 120 and 104 g/m3 at temperatures of 10.0 and 15.6 or 21.1 degrees C, respectively, which resulted in complete kill of all larvae. Pupae that became available later in the year as temperatures warmed were fumigated at 15.6 and 21.1 degrees C with 104 g/m3, which resulted in complete pupal mortality. The next year (2002), we conducted 24-h fumigations with doses of 116 g/m3 at 4.4 and 10.0 degrees C with cold-harvested wood infested with cold-acclimated larvae. Cold-acclimated larvae required much higher concentration times time (CxT) product for control at 4.4 and 10.0 degrees C compared with nonacclimated larvae. Sulfuryl fluoride treatments at a dose of 104 g/m3 and temperature of 15.6 degrees C and above and that achieved a CxT product of 1,095 g-h/m3 or above are recommended for RWPM infested with Asian longhorned beetle larvae and pupae.  相似文献   

17.
A method for sampling the population of large Macrotermes nests is described. Fumigation with methyl bromide was followed by complete extraction of the nest contents. Termites and fungus comb fragments were separated from soil by flotation in water. Results for fumigated and live-dug nests were compared. Sampling without prior fumigation caused the population and biomass to be underestimated by up to an order of magnitude. Caste and instar ratios were also distorted in ways that were not consistent but were affected by the size of the nest. It is therefore concluded that methyl bromide fumigation is a valuable technique for sampling the populations of Macrotermes nests.  相似文献   

18.
Treating Mexican grapefruit with gibberellic acid (GA3) before color break, significantly delayed peel color change and increased peel puncture resistance, but it did not reduce grapefruit susceptibility to Mexican fruit fly, Anastrepha ludens (Loew) attack under natural conditions. Despite GA3 treatments, larval infestation levels increased with higher fruit fly populations, which also increased as the season progressed. Late in the season, infestation levels were even higher in GA3-treated fruit compared with untreated fruit, possibly because treated fruit were in better condition at that stage. Egg clutch size was significantly greater in very unripe, hard, GA3-treated fruit at the beginning of the harvest season and in December, compared with control fruit. Under laboratory conditions, egg injection into different regions of the fruit suggested that A. ludens eggs are intoxicated by peel oil content in the flavedo region. However, A. ludens' long aculeus allows females to oviposit eggs deeper into the peel (i.e., albedo), avoiding toxic essential oils in the flavedo. This makes A. ludens a particularly difficult species to control compared with other citrus-infesting species such as Anastrepha suspensa (Loew), Anastrepha fraterculus (Wiedemann), and Ceratitis capitata (Wiedemann) (fly species with significantly shorter aculei), which can be effectively managed with GA3 sprays. We discuss our findings in light of their practical implications and with respect to the oviposition behavior of various fruit flies attacking citrus.  相似文献   

19.
Host status for Mexican fruit fly (Anastrepha ludens (Loew)) was examined under laboratory conditions in cage infested Eureka and Meyer lemons. Our approach was to allow females to oviposit on the two cultivars in separate laboratory cages with aluminum foil covering to restrict the areas where females had access to fruit surface. Fruit of each cultivar were placed in covered trays for incubations and at approximately weekly intervals, fruit were removed, dissected, and live and dead eggs and larvae tabulated in each tissue of the fruit. Infestation and survival were tabulated and analyzed for the effects of harvest date, fruit color and brix indices, postoviposition period, and cultivar. Infestation rate, determined by counts of total eggs and larvae was significantly higher in Meyer lemons. In both cultivars, females deposited eggs into both albedo and pulp tissue but not into flavedo. Both cultivars showed high resistance (> 90% mortality) to egg and first instars survival in albedo and pulp. Second and third instars surviving in the pulp had high survival rates (> 60%) in both cultivars in fruit dissected at weeks 2-4 after infestation. Total adults produced were slightly higher, and total second and third stage larvae were also higher for Meyer lemons. Numbers of adults and total second and third stage larvae increased in Eureka lemons in more mature fruit, but the higher numbers in Meyer lemons were not associated with fruit maturity, at time of infestation. Numbers of second and third stage larvae were significantly correlated with some fruit color indices in Eureka but not in Meyer lemons. Application of these results to quarantine risk analysis is discussed.  相似文献   

20.
Anoplophora glabripennis (Motschulsky), has recently (since 1996) established in limited infestations near several cities in the United States. A. glabripennis was probably introduced into the United States with solid wood packing or dunnage. During 2001, we evaluated the current APHIS Schedule T404-b-1-1 for methyl bromide (MeBr) fumigation. Fumigations were conducted in 432-liter Lexan chambers inside a 6.1-m refrigerated container. Each fumigation consisted of 12 high-moisture, naturally infested Populus spp. timbers. We fumigated wood for 24 h at 4.4 degrees C (80 g/m3), 10.0 degrees C (64 g/m3), 15.6 degrees C (56 g/m3), and 21.1 degrees C (48 g/m3). All schedule doses resulted in 100% kill of A. glabripennis larvae. During 2002, we conducted additional fumigations to determine the basic toxicity of MeBr to A. glabripennis larvae in solid wood timbers of 10 by 10 by 115-cm size. Probit analysis estimated the CxT product at 99.0, 99.9, 99.99, and 99.99683% kill (probit-9). The probit-9 values for CxT were 1,196.1, 918.7, 642.4, and 362.4 g-h/m3 at 4.4, 10.0, 15.6, and 21.1 degrees C, respectively. Applied doses to achieve this level of control were estimated to be 119.6, 82.7, 56.0, and 32.2 g/m3, respectively. These applied doses are satisfactory for wood as a commodity with wood load factors of approximately 25% and may be higher than necessary for container fumigation where sorptive wood load as crating or pallets may only be 5% or less. The APHIS Schedule T404-b-1-1 is adequate if extended for 24 h and should be amended to include intermediate doses at 10.0 and 15.6 degrees C, thus reducing the use of MeBr at these temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号