首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter(-1) for Chinook but only 5 spores liter(-1) for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts.  相似文献   

2.
Water temperature influences almost every biological and physiological process of salmon, including disease resistance. In the Klamath River (California), current thermal conditions are considered sub-optimal for juvenile salmon. In addition to borderline temperatures, these fish must contend with the myxozoan parasite Ceratomyxa shasta , a significant cause of juvenile salmonid mortality in this system. This paper presents 2 studies, conducted from 2007 to 2010, that examine thermal effects on C. shasta -induced mortality in native Klamath River Chinook ( Oncorhynchus tshawytscha ) and coho ( Oncorhynchus kisutch ) salmon. In each study, fish were exposed to C. shasta in the Klamath River for 72 hr and then reared in the laboratory under temperature-controlled conditions. The first study analyzed data collected from a multi-year monitoring project to asses the influence of elevated temperatures on parasite-induced mortality during the spring/summer migration period. The second study compared disease progression in both species at 4 temperatures (13, 15, 18, and 21 C) representative of spring/summer migration conditions. Both studies demonstrated that elevated water temperatures consistently resulted in higher mortality and faster mean days to death. However, analysis of data from the multi-year monitoring showed that the magnitude of this effect varied among years and was more closely associated with parasite density than with temperature. Also, there was a difference in the timing of peak mortality between species; Chinook incurred high mortalities in 2008 and 2009, whereas coho was greatest in 2007 and 2008. As neither temperature nor parasite density can be easily manipulated, management strategies should focus on disrupting the overlap of this parasite and its obligate hosts to improve emigration success and survival of juvenile salmon in the Klamath River.  相似文献   

3.
A survey for Manayunkia speciosa, the freshwater polychaete host for the myxozoan parasite Ceratomyxa shasta, was conducted from 2003 to 2005 as part of an integrated study of the epizootiology of ceratomyxosis in Klamath River salmonids. Substrata samples (n = 257) were collected in a variety of habitats from Klamath Lake to the mouth of the Klamath River to document occurrence and relative abundance of the polychaete by habitat type and to estimate the prevalence of C. shasta within selected polychaete populations. Populations of M. specios a were identified throughout the Klamath River within pools (51.6%), eddy-pools (47.0%), and runs (40.0%). Large populations of M. speciosa were consistently found at the inflow to the main-stem reservoirs where densities were correlated with distance from the inflow into the reservoir. Using polymerase chain reaction assay and composite samples, 12 of 71 populations identified were tested for C. shasta, revealing a mean infection prevalence of 0.27%. An area of elevated infection prevalence (4.9 and 8.3%) was identified with 2 populations below a barrier to salmonid migration, which explains the high infectious spore densities demonstrated in concurrent studies and observations of C. shasta-induced mortality in Klamath River fall Chinook salmon (Oncorhynchus tshawytscha).  相似文献   

4.
A coelomic myxozoan infection was detected in freshwater polychaetes, Manayunkia speciosa from the Klamath River, Oregon/California, a site enzootic for the myxozoan parasites Ceratomyxa shasta and Parvicapsula minibicornis. The tetractinomyxon type actinospores had a near-spherical spore body 7.9 x 7.1 microm, with 3 spherical, protruding polar capsules, no valve cell processes, and a binucleate sporoplasm. Parvicapsula minibicornis-specific primers Parvi1f and Parvi2r amplified DNA from infected polychaetes in a polymerase chain reaction (PCR) assay. The small subunit 18S rRNA gene of the spores was sequenced (GenBank DQ231038) and was a 99.7% match with the sequence for P. minibicornis myxospore stage in GenBank (AF201375). Chinook salmon (Oncorhynchus tshawytscha) exposed to a dose of 1,000 actinospores per fish tested PCR positive for P. minibicornis at 14 wk postinfection and presporogonic stages were detected in the kidney tubules by histology at 20 wk. This life cycle is 1 of only about 30 known from more than 1,350 myxozoan species, and only the second known from a freshwater polychaete.  相似文献   

5.
The distribution and abundance of the myxosporean parasite Parvicapsula minibicornis in the Klamath River mirrored that of Ceratomyxa shasta, with which it shares both its vertebrate and invertebrate host. Assay of fish held at sentinel sites and water samples collected from those sites showed that parasite prevalence was highest below Iron Gate dam, which is the barrier to anadromous salmon passage. Above this barrier parasite levels fluctuated, with the parasite detected in the free-flowing river reaches between reservoirs. This was consistent with infection prevalence in the polychaete host, Manayunkia speciosa, which was greater than 1% only in populations tested below Iron Gate dam. Although a low prevalence of infection was detected in juvenile out-migrant fish in the Trinity River, the tributaries tested did not appear to be a significant source of the parasite to the mainstem despite the presence of large numbers of infected adult salmon that migrate and spawn there. Rainbow trout became infected during sentinel exposure, which expands the host range for P. minibicornis and suggests that wild rainbow trout populations are a reservoir for infection, especially above Iron Gate dam. High parasite prevalence in the lower Klamath River is likely a combined effect of high spore input from heavily infected, spawned adult salmon and the proximity to dense populations of polychaetes.  相似文献   

6.
Ceratomyxa shasta is a virulent myxosporean parasite of salmon and trout in the Pacific Northwest of North America. The parasite is endemic in the Klamath River, Oregon/California, where a series of dams prevent movement of fish hosts between the upper and lower parts of the basin. Ceratomyxa shasta exhibits a range of infection patterns in different fish species above and below the dams. We hypothesised that the variations in infection and disease are indicators that different strains of the parasite exist, each with distinct host associations. Accordingly, we sought to identify strain-specific genetic markers in the ssrRNA and internal transcribed spacer region 1 (ITS-1). We examined 46 C. shasta isolates from water samples and two fish hosts, from June 2007 field exposures at upper and lower Klamath River sites with similarly high parasite densities. We found 100% of non-native rainbow trout became infected and died at both locations. In contrast, mortality in native Chinook salmon was <10% in the upper basin, compared with up to 40% in the lower basin. Parasite ssrRNA sequences were identical from all fish. However, ITS-1 sequences contained multiple polymorphic loci and a trinucleotide repeat (ATC)0-3 from which we defined four genotypes: 0, I, II and III. Non-native rainbow trout at both sites were infected with genotype II and with a low level of genotype III. Chinook salmon in the upper basin had genotypes II and III, whereas in the lower basin genotype I predominated. Genotype I was not detected in water from the upper basin, a finding consistent with the lack of anadromous Chinook salmon there. Genotype O was only detected in water from the upper basin. Resolution of C. shasta into sympatric, host-specific genotypes has implications for taxonomy, monitoring and management of this significant parasite.  相似文献   

7.
There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.  相似文献   

8.
9.
Ceratomyxa shasta is a virulent pathogen of salmonid fishes that is enzootic in the Pacific Northwest of North America. Current parasite detection methods involve sentinel fish exposures that are laborious and time-consuming. As a substitute, a filtering protocol and a quantitative real-time TaqMan polymerase chain reaction (QPCR) assay were developed to detect and enumerate parasite spores in river water. Fluorescence was detected from both the myxospore and actinospore stages of the parasite but not from the fish or polychaete hosts or from 9 other myxozoans tested. Less than 1/1000th of a spore was detected, indicating each had >1000 copies of the target 18S rRNA gene. The assay detected 1 spore in 1 l river water. Inhibition of the assay by some river samples was overcome by reducing the template volume and including bovine serum albumin in the reaction; occasionally a second purification step was required. The QPCR methodology was utilised to investigate the temporal and spatial distribution of C. shasta in the Klamath River, Oregon/ California. The parasite was detected throughout the river, and 2 of 5 tributaries tested contributed parasites to the mainstem. Correlation of QPCR cycle threshold values with a standard curve for known starting numbers of whole spores revealed several sites where parasite abundance was in excess of 20 spores l(-1). Although QPCR data corroborated results of sentinel fish exposures, spore numbers did not correlate consistently with mortality in the exposure groups. The water sampling and filtering protocol combined with the QPCR assay is a simple and relatively rapid method for detection and quantification of parasite levels in environmental water samples.  相似文献   

10.
Understanding factors influencing survival of Pacific salmonids (Oncorhynchus spp.) is essential to species conservation, because drivers of mortality can vary over multiple spatial and temporal scales. Although recent studies have evaluated the effects of climate, habitat quality, or resource management (e.g., hatchery operations) on salmonid recruitment and survival, a failure to look at multiple factors simultaneously leaves open questions about the relative importance of different factors. We analyzed the relationship between ten factors and survival (1980–2007) of four populations of salmonids with distinct life histories from two adjacent watersheds (Salmon and Scott rivers) in the Klamath River basin, California. The factors were ocean abundance, ocean harvest, hatchery releases, hatchery returns, Pacific Decadal Oscillation, North Pacific Gyre Oscillation, El Niño Southern Oscillation, snow depth, flow, and watershed disturbance. Permutation tests and linear mixed-effects models tested effects of factors on survival of each taxon. Potential factors affecting survival differed among taxa and between locations. Fall Chinook salmon O. tshawytscha survival trends appeared to be driven partially or entirely by hatchery practices. Trends in three taxa (Salmon River spring Chinook salmon, Scott River fall Chinook salmon; Salmon River summer steelhead trout O. mykiss) were also likely driven by factors subject to climatic forcing (ocean abundance, summer flow). Our findings underscore the importance of multiple factors in simultaneously driving population trends in widespread species such as anadromous salmonids. They also show that the suite of factors may differ among different taxa in the same location as well as among populations of the same taxa in different watersheds. In the Klamath basin, hatchery practices need to be reevaluated to protect wild salmonids.  相似文献   

11.
Lin JE  Hilborn R  Quinn TP  Hauser L 《Molecular ecology》2011,20(23):4925-4937
Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors.  相似文献   

12.
A Salvelinus -infecting variant of Loma salmonae , derived from naturally-infected Chinook salmon Oncorhynchus tshawytscha by serial passage through brook trout Salvelinus fontinalis , has been isolated and amplified. Loma salmonae SV ( Salvelinus -variant) has a high preference for species of Salvelinus (brook trout and Arctic charr S. alpinus ) and low virulence and preference for species of Oncorhynchus (rainbow trout O. mykiss , Chinook salmon, cohoSalmon O. kisutch ) or Salmo (Atlantic salmon Salmo salar ). Although this variant of L. salmonae was different from the original, the differences do not justify describing it as a new species, although definitive determination is pending.  相似文献   

13.
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.  相似文献   

14.
A diagnostic procedure based on the polymerase chain reaction (PCR) was developed for the myxosporean parasite Ceratomyxa shasta. Three sets of oligonucleotide primers were designed to specifically amplify C. shasta ribosomal RNA genes and several parameters of the assay were tested and optimised. A simple protocol for the processing of fish tissue samples was also developed. In a single round, 20 microliters volume reaction the optimised procedure allows the detection of 50 fg of purified C. shasta genomic DNA, or 0.01 spore from a seeded fish intestine sample. This protocol is considerably faster, cheaper and more reliable than any previous diagnostic procedure for a myxosporean parasite, and can be an invaluable tool for the monitoring of early and/or subclinical C. shasta infections in wild and cultured salmon populations.  相似文献   

15.
The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, L ETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult L ETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.  相似文献   

16.
Ichthyophonus hoferi Plehn & Mulsow, 1911, is a cosmopolitan, protistan pathogen of marine fishes. It is prevalent in mature returning Chinook salmon Oncorhynchus tshawytscha in the Yukon River watershed, and may be associated with prespawning mortality. We developed and evaluated a polymerase chain reaction (PCR) test for I. hoferi using primers specific to the parasite's small subunit rDNA. The test has a minimum detection limit of approximately 10(-5) parasite spores per reaction and does not cross-react with the closely related salmon parasites Dermocystidium salmonis or Sphaerothecum destruens. Sensitivity and specificity of the PCR test used on somatic muscle and heart tissue for detecting infected fish were determined using 334 Chinook salmon collected from the Yukon River at 2 locations (Tanana and Emmonak) in 2003 and 2004. The true infection status of the fish was determined by testing somatic muscle, heart and kidney tissue using histological evaluation, culture, and PCR. The severity of infection was grouped into 2 categories, light and heavy infection. The probability of detecting a heavily infected fish (sensitivity of the test) was generally much higher than the probability of detecting light infection, suggesting that more than one tissue and/or method should be used to accurately detect light or early infection by I. hoferi. The probability of correctly identifying a negative fish (specificity of the test) was always greater than 94% regardless of the tissue used, infection severity, sampling site or year of collection.  相似文献   

17.
Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected.  相似文献   

18.
Polymerase chain reaction (PCR) and microscopic examination of stained kidney sections were used to diagnose infections with the myxozoan parasite Parvicapsula minibicornis in maturing Fraser River salmon. In 2 series of collections, the parasite was detected in 109 of 406 migrating sockeye salmon Oncorhynchus nerka belonging to Early Stuart, Early Summer and Summer run-timing groups, mainly upper Fraser River stocks. However, the parasite was detected neither in fish at sea nor once they had migrated several 100 km upstream. Prevalence then increased to 95% or greater at the spawning grounds. Histological examination of kidney was less sensitive than PCR in detecting the parasite in salmon collected from the earliest sites in both collections found positive by PCR. Severity of infection was greatest at the spawning grounds. Development of infection in sockeye, measured by prevalence, severity or by the rate of false-negative histological diagnoses, appeared to be a useful estimate of in-river residence time. Prevalence and severity of infections in sequential samples of Harrison River and Weaver Creek sockeye stocks collected from the Harrison River indicated that more time had elapsed since parasite transmission than would be predicted based on migration distance alone. Pink salmon Oncorhynchus gorbuscha, coho salmon O. kisutch and chinook salmon O. tshawytscha were found to be infected with the parasite. Development of P. minibicornis in pink salmon was most similar to that in sockeye. Pink and coho salmon may be at risk to the pathological consequences of P. minibicornis infection.  相似文献   

19.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   

20.
The Duwamish estuary is an industrialized waterway located in Seattle, WA, USA. Despite a history of habitat loss, naturally produced juvenile Chinook salmon use the estuary. In addition to experiencing degraded habitat in the estuary, wild salmon growth may be affected by competition with more than three million hatchery fish released yearly into the river. Restoring habitat to benefit salmon in the Duwamish River is a priority for trustees of public resources, and a number of wetland restoration sites have been created there. We tested the function of restored sites in the Duwamish estuary for juvenile Chinook salmon by comparing fish densities from enclosure nets or beach seines at three paired restored/un-restored sites and by applying environmental and diet data to a bioenergetics model. We also examined temporal and diet overlap of wild juvenile Chinook salmon with other salmon species and with hatchery-reared Chinook salmon using non-metric multidimensional scaling (NMDS). At a brackish upstream site with a relatively large opening to the river, we found higher densities of juvenile Chinook salmon at the restored site. NMDS results indicated that juvenile Chinook salmon fed on different taxa at the restored sites than at the reference sites. However, modeled growth was similar at restored and reference sites. Co-occurring juvenile chum and Chinook salmon fed differently, with chum eating smaller prey, and Chinook salmon eating larger prey. Co-occurring hatchery and wild juvenile Chinook salmon had similar diets, indicating that they may compete for prey. However, modeled growth was positive and did not differ between hatchery and wild fish, suggesting that food was not limiting. Bioenergetics models indicated that overall juvenile Chinook salmon growth potential at the brackish water site was consistently higher than at more saline sites. Our results suggest that restoration sites in the Duwamish estuary that have larger access openings and are located in brackish water may have increased function over other configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号