首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pirrotta V  Poux S  Melfi R  Pilyugin M 《Genetica》2003,117(2-3):191-197
Polycomb complexes assemble at their target sites and silence neighboring genes when these are not actively transcribed. The action of these complexes and of Trithorax complexes bound to the Polycomb Response Element establish alternative silent or derepressed states that are remembered through cell division and maintained for the rest of development. Recent results that may help explain the properties of these states are reviewed.  相似文献   

2.
3.
4.
Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.  相似文献   

5.
6.
Polycomb-group (PcG) and trithorax-group (trxG) genes encode important regulators of homeotic genes, repressors and activators, respectively. They act through epigenetic mechanisms that maintain chromatin structure. The corto gene of Drosophila melanogaster encodes a co-factor of these regulators belonging to the Enhancer of Trithorax and Polycomb class. We have previously shown that Corto maintains the silencing of the homeotic gene Abdominal-B in the embryo and that it interacts with a cyclin, Cyclin G, suggesting that it could be a major actor in the connection between Polycomb/Trithorax function and the cell cycle. We show here that inactivation of Cyclin G by RNA interference leads to rotated genitalia and cuticle defects in the posterior abdomen of pupae and that corto genetically interacts with Cyclin G for generating these phenotypes. Examination of these pupae shows that development of the dorsal histoblast nests that will give rise to the adult epithelium is impaired in the posterior segments which identity is specified by Abdominal-B. Using a line that expresses LacZ in the Abdominal-B domain, we show that corto maintains Abdominal-B repression in the pupal epithelium whereas Cyclin G maintains its activation. These results prompt us to propose that the interaction between the Enhancer of Trithorax and Polycomb Corto and Cyclin G is involved in regulating the balance between cell proliferation and cell differentiation during abdominal epithelium development.  相似文献   

7.
8.
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.  相似文献   

9.
10.
11.
《Epigenetics》2013,8(8):537-540
Temporal and spatial control of Hox gene expression is essential for correct patterning of many animals. In both Drosophila and vertebrates, Polycomb and Trithorax group complexes control the maintenance of Hox gene expression in appropriate domains. In vertebrates, dynamic changes in chromatin modifications are also observed during the sequential activation of Hox genes in the embryo, suggesting that progressive epigenetic modifications could regulate collinear gene activation.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号