首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eutrophication of Dutch lakes has led to massive algal growth, disappearance of most of the macrophytes and disturbance of the food chain. The pike population has fallen sharply and bream developed very strongly, in the absence of this predator. Eutrophication problems are primarily being tackled by reducing nutrient loading. Restoration of water quality, however, seems to be impeded by the present structure of the food chain,i.e. the large bream stock. Biomanipulation, especially fish stock control with the aim of reducing the bream stock and increasing that of predatory fish, can accelerate the process of restoration. For the further development of biomanipulation it is very important that water authorities and managers of fish stocks agree on a common strategy.  相似文献   

2.
A conceptual mathematical model of the dynamics of fish and zooplankton (rotifer) populations of connected lakes Naroch and Myastro (Belarus) is built and examined with parameters based on field data. It is shown that community coupling and trophic interactions give rise to both regular and irregular oscillations in population numbers.  相似文献   

3.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

4.
Grimm  M. P.  Backx  J. J. G. M. 《Hydrobiologia》1990,200(1):557-566
The feasibility of biomanipulation is related particularly to reducing the production and recruitment of planktivorous fish stocks. For assessing the level of predation needed to suppress planktivorous fish stocks, the relation between fish P and B, on one hand, and nutrient concentration on the other were analyzed. The carrying capacity of shallow lakes in terms of biomass is related to the total phosphorus concentration and nature of the lake bottom substrate. The production of planktivorous fish was 60–80% of the maximum carrying capacity. It is argued that aquatic vegetation and northern pike are effective tools to maintain water quality, but these are limited by the maximum nutrient concentration aquatic vegetation can sustain.  相似文献   

5.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

6.
Summary 1. To determine feeding links between primary producers, invertebrates and fish, stable isotope analyses and gut content analyses of fish were conducted on the components of four shallow, eutrophic to hypertrophic, plant-dominated lakes.
2. Although separation of basal resources was possible, the diets of both fish and invertebrates were broad, comprising food from different compartments (planktonic, epiphytic/benthic), as well as from different trophic levels.
3. Mixing models were used to determine the extent to which periphyton production supported higher trophic levels. Only one species of invertebrate relied upon periphyton production exclusively.
4. Fish density affected the diets of invertebrates. The response was different for planktonic and epiphytic/benthic invertebrates. The proportion of periphyton production in the diets of zooplankton appeared to increase with fish density, whilst it decreased for other invertebrates.
5. As all zooplankton samples were collected in the open water at dusk, these results are further evidence for the diurnal horizontal migration of zooplankton. Although not conclusive, they are consistent with a behavioural response by invertebrates and zooplankton in the presence of fish.  相似文献   

7.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

8.
Søndergaard  M.  Jeppesen  E.  Mortensen  E.  Dall  E.  Kristensen  P.  Sortkjær  O. 《Hydrobiologia》1990,(1):229-240
Hydrobiologia - No recovery was recorded in the shallow and eutrophic Lake Væng, Denmark, after a sewage diversion in 1981, due to an internal phosphorus loading and a dominance of...  相似文献   

9.
The growth rate, birth rate, death rate and production of the cladocera of Lake Kasumigaura were studied. Standing crop of zooplankton seemed to be governed by predation rather than food. Maximum productivity of cladocerans was observed in late August and early September. There were differences in production between sampling stations. The highest production was recorded in the most eutrophic basin, where heavy water blooms of Microcystis aeruginosa occurred. Maximum secondary production coincided with maximum primary production, which was mainly due to M. aeruginosa. Cladocerans probably utilize decomposed or decomposing Microcystis cells and bacteria in summer. Estimates of annual production of cladocerans varied from 4.2 to 13.1 g dry wt · m–3, and annual P:B ratios ranged from 36 to 108. The production of cladocerans in Takahamairi Bay was 2.7% of gross primary production.  相似文献   

10.
1. Two enclosure experiments were carried out in Laguna Bufeos, a neotropical várzea lake located in the floodplain of River Ichilo (Bolivia). The experiments aimed (i) to assess the relative importance of bottom‐up and top‐down control on the plankton community, (ii) to assess the relative impact of direct and indirect effects of planktivorous fish on the zooplankton, and (iii) to attempt to identify the mechanisms responsible for these effects. 2. During the first experiment, bottom‐up control seemed to dominate the planktonic food web. Compared with fishless enclosures, oxygen concentrations, chlorophyll a levels and the population densities of all cladoceran zooplankton taxa increased in enclosures with fish. Birth rates of Moina minuta, the dominant taxon, were substantially higher in the presence than in the absence of fish, whereas death rates did not differ between treatments. These results are the first to suggest that the positive effects of fish on crustacean zooplankton via effects on nutrient cycling and the enhancement of primary production can compensate for losses because of fish‐related mortality. 3. During the second experiment, the direction of control appeared to vary between trophic levels: the phytoplankton appeared to be bottom‐up controlled whereas the zooplankton was mainly top‐down controlled. Chlorophyll a concentrations were enhanced by both fish and nutrient additions. The majority of the zooplankton taxa were reduced by the presence of fish. Birth rates of most cladoceran taxa did not differ between treatments, whereas death rates were higher in the enclosures with fish than in the fishless enclosures. Bosminopsis deitersi reached higher densities in the presence of fish, probably because of a release from predation by Chaoborus. 4. We convincingly showed strong deviations from trophic cascade‐based expectations, supporting the idea that trophic cascades may be weak in tropical lakes.  相似文献   

11.
1. Balitorid loaches are widespread and highly diverse in Asian streams, yet their life history and ecology have received little attention. We investigated seasonal (wet versus dry season) and spatial variation in populations of algivorous Pseudogastromyzon myersi in Hong Kong, and estimated the magnitude of secondary production by this fish in pools in four streams (two shaded and two unshaded) over a 15‐month period. 2. Mean population densities of P. myersi ranged from 6.0 to 23.2 individuals m−2, constituting more than half (and typically >70%) of benthic fishes censused. Abundance was c. 25% greater in the wet season, when recruitment occurred. Significant density differences among streams were not related to shading conditions and were evident despite small‐scale variations in P. myersi abundance among pools. Mean biomass varied among streams from 0.85 to 3.87 g ash‐free dry weight (AFDW) m−2. Spatial and seasonal patterns in biomass and density were similar, apart from some minor disparities attributable to differences in mean body size among populations. 3. All four P. myersi populations bred once a year in June and July, and life spans varied from 24 to 26 months. Populations consisted of three cohorts immediately after recruitment but, for most of the study period, only two cohorts were evident. Cohort‐specific growth rates did not differ significantly among streams but, in all streams, younger cohorts had higher cohort‐specific growth rates. 4. Secondary production of P. myersi estimated by the size‐frequency (SF) method was 2.7–11.5 g AFDW m−2 year−1 and almost twice that calculated by the increment‐summation (IS) method (1.2–6.6 g AFDW m−2 year−1). Annual P/B ratios were 1.17 – 2.16 year−1 (IS) and 2.73 – 3.22 year−1 (SF). Highest production was recorded in an unshaded stream and the lowest in a shaded stream, but site rankings by production did not otherwise match shading conditions. Wet‐season production was six times greater than dry‐season production, and daily production fell to almost zero during January and February. Cool temperatures (<17 °C) may have limited fish activity and influenced detectability during some dry‐season censuses. Estimates of abundance and annual production by P. myersi are therefore conservative. 5. Comparisons with the literature indicate that the abundance and production of P. myersi in Hong Kong was high relative to other benthic fishes in tropical Asia, or their temperate counterparts in small streams. Manipulative experiments are needed to determine the influence of P. myersi, and algivorous balitorids in general, on periphyton dynamics and energy flow in Asian streams.  相似文献   

12.
Pelecus cultratus (razor fish), a cyprinid fish, has become a dominant species in Neusiedler See. Gut content analyses of 400 specimens collected in 1989 and 1990 showed that Pelecus fed mainly on large zooplankton (Diaphanosoma, Leptodora and Arctodiaptomus), although their diet also included Insecta (larvae, pupae and adults) and Arachnida (spiders), occasionally small fishes. Comparison of the relative abundance of the zooplankton species in the stomach to the lake indicated that Pelecus strongly selected cladocerans over copepods, and fed mostly on large-sized individuals of Diaphanosoma, Leptodora and Arctodiaptomus. The fish showed a significant positive selectivity only for individuals of Diaphanosoma > 1.0 mm and Leptodora > 4.0 mm. In contrast, selectivity increased continuously in relation to the diameter of the compound eye of both prey species. This suggested that prey visibility was a key factor in determining the prey selectivity by Pelecus. It also seems likely that the persistence of the Leptodora population in Neusiedler See can be attributed to negligible predation pressure on the smaller sized individuals of this species.  相似文献   

13.
The London reservoirs sited in the lower Thames valley form part of a continuously flowing, drinking water supply system and as such have been wholly designed, constructed and operated by man for this sole function. This paper adds some information on the potential impact of the fish populations on the ecology of these relatively deep reservoirs. The fish fauna was studied by night shore seining (to detect inshore fish communities) and acoustically (to detect the offshore fish communities). Ruffe (Gymnocephalus cernuus) and perch (Perca fluviatilis) are the main species capable of reproduction on the steeply sloping concrete walls of the reservoirs. Cyprinids are almost absent in Wraysbury Reservoir whilst in Queen Mary and Queen Elizabeth II reservoirs they are more abundantly represented due to enhanced spawning possibilities associated with inundated marginal terrestrial plants in Queen Mary and the net-sides of empty fish cages in Queen Elizabeth II reservoir. Fish biomasses of the three London reservoirs studied are low: 6.8 kg/ha in Wraysbury Reservoir, 28.6 kg/ha in Queen Mary reservoir and 45.6 kg/ha in Queen Elizabeth II Reservoir. Coinciding with this is a zooplankton of unusually large-sized cladocerans, largely daphnids, and high fish growth rates.  相似文献   

14.
Abiotic factors and primary production by phytoplankton and microphytobenthos was studied in the turbid Westeschelde estuary. Because of the high turbidity and high nutrient concentrations primary production by phytoplankton is light-limited. In the inner and central parts of the estuary maximum rates of primary production were therefore measured during the summer, whereas in the more marine part spring and autumn bloom were observed. Organic loading is high, causing near anaerobic conditions upstream in the river Schelde. Because of this there were no important phytoplankton grazers in this part of the estuary and hence the grazing pressure on phytoplankton was minimal. As this reduced losses, biomass is maximal in the river Schelde, despite the very low growth rates.On a number of occasions, primary production by benthic micro-algae on intertidal flats was studied. Comparison of their rates of primary production to phytoplankton production in the same period led to the conclusion that the contribution to total primary production by benthic algae was small. The main reason for this is that the photosynthetic activity declines rapidly after the flats emerged from the water. It is argued that CO2-limitation could only be partially responsible for the noticed decrease in activity.  相似文献   

15.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

16.
Marionina southerni (Cernosvitov) was numerically the dominant oligochaete in a shallow, strongly exposed surf zone locality (0–1 m depth) in the mesotrophic Lake Esrom. It comprised 21,500 ind m–2 or nearly 50% of the total oligochaete community, which otherwise was dominated by Nais spp. and the lumbriculid Stylodrilus heringianus Claparède. M. southerni appears to have a 1-y life cycle. Individual biomass ranged from 3 to 48 µg ash free dry weight. Annual net production at the site was 5.1 kcal m–2 (size-frequency method) with a P/B ratio of 2.5. This is about 0.5% of the estimated mean zoobenthic production in the littoral zone from 0 to 2 m depth in Lake Esrom. At 5° C M. southerni showed a constant oxygen uptake down to 25% oxygen saturation, but practically no regulatory respiration was found at 20 °C. In the field M. southerni was never found in sediment with less than 60% oxygen saturation. The annual community respiration of M. southerni was 14.2 kcal m–2, and annual assimilation thus made up 19.3 kcal m–2 with a net production efficiency of 26.5%.  相似文献   

17.
In 2002, the neritic copepod Acartia tumida was present in the plankton of Kievka Bay from February through July at a temperature of ?1.2 to 14°C with an average population density of 6812 ind/m3 and a biomass of 532.75 mg/m3 (0.12–65.33 and 2.2–87.84% of total copepod density and biomass, respectively). The maximum population density of A. tumida (45 600 ind/m3) was recorded in the first ten-day period of April at a temperature of 2.2–3.8°C. Seasonal variations in the age and sex structure of A. tumida population were found. From February to July, A. tumida produced two generations.  相似文献   

18.
Extracellular phosphatases are an important part of the phosphorus cycle in aquatic environments. Phosphatase activity (PA) in plankton was studied in seven subtropical shallow lakes of different exploitation management and trophic status in the urban area of Wuhan City. Bulk PA was rather high (range 1.1–11 μmol l−1 h−1), although concentrations of soluble reactive phosphorus (SRP) were also high (range 27 μg P l−1 to ~1.5 mg P l−1) in all lakes. Cell-associated extracellular PA in phytoplankton was detected using the fluorescence-labelled enzyme activity technique. Phytoplankton species partly contributed to the bulk PA. We found explicit differences in the presence of cell-associated phosphatase within the main phytoplankton groups; species belonging to Chlorophyta and Dinophyta were regularly phosphatase-positive, while Cyanophyta and Bacillariophyceae were phosphatase-negative in all but one case. Furthermore, there is a certain potential of extracellular phosphatases produced by heterotrophic nanoflagellates in most of the lakes. This new finding compromises the ‘traditional’ interpretation of bulk phosphatase data as being due to overall phytoplankton or bacterial P regeneration.  相似文献   

19.
Alvarez Cobelas  M.  Velasco  J. L.  Rubio  A.  Rojo  C. 《Hydrobiologia》1994,275(1):139-151
Weekly studies of phytoplankton biomass and environmental variables were made over one year in a shallow stratifying, hypertrophic El Porcal lake near Madrid (Spain). Data were collected on abiotic factors, primary production, biomass and phytoplankton losses and subjected to reduction by means of several principal component analyses. Furthermore, weekly data on the same variables were gathered from published studies on Überlinger See, an embayment of the much deeper, mesotrophic Lake Constance (Central Europe), and treated in the same way. The two first principal components of PCAs on biological variables explained more than 60% of overall variance in both lakes. They could be ascribed to phytoplankton production + biomass and photosynthetic physiology + phytoplankton losses, respectively. The ordination of the biological trajectories in the data space of the two first principal components revealed six stable states of phytoplankton biomass in the shallow lake and seven in the deep lake. The breakpoints between stable states could be due to environmental, abiotic variables in some cases but biological interactions were suspected to be the cause of the other breakpoints. The abiotic effects on phytoplankton biomass took longer to occur in the deep lake. Also, short-term dynamics (one-three weeks) were demonstrated for both phytoplankton communities.A preliminary comparison between phytoplankton biomass dynamics in stratifying, shallow and deep lakes suggests that differences may be attributed partly to differences in depth.  相似文献   

20.
The two-phase life history of most marine fishes and invertebrates has enormous implications for dispersal, population connectivity, and resource management. Pelagic dispersal larvae of marine animals traditionally thought to ensure that populations are widespread, that chances of local extinction are low, and that marine protected areas (MPA) can easily function to replenish both their own populations and those of unprotected areas. Traditionally, dispersal is considered to depend primarily on two variables: pelagic larva duration and far-field currents. These conclusions arise from the open population paradigm and are usually accompanied by a simplifying assumption: larvae are distributed passively by far-field currents. Unfortunately, they ignore the complex reality of circulation and hydrological connectivity of reefs, and do not consider newly-demonstrated behavioural capabilities of coral-reef fish larvae. Far-field circulation varies with depth and often excludes water bodies where propagules are released, and this has important implications for predicting trajectories of even passive larvae. However, larvae are not passive: late-stage larvae of coral-reef fishes can swim faster than currents for long periods, can probably detect reefs at some distance, and can actively find them. This behaviour is flexible, which greatly complicates modelling of larval fish trajectories. Populations at ecological (as opposed to evolutionary) scales are probably less open and more subdivided than previously assumed. All this means that dispersal predictions based solely on far-field water circulation are probably wrong. An emerging view of larval-fish dispersal is articulated that takes these new data and perspectives into account. This emerging view shows that re-evaluation of traditional views in several areas is required, including the contribution of larval-fish biology and dispersal to biodiversity patterns, the way reef fishes are managed, and the way in which MPA are thought to operate. At evolutionary and zoogeographic scales, reef-fish populations are best considered to be open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号