首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The targeting of messenger RNAs (mRNAs) to specific subcellular sites for local translation plays an important role in diverse cellular and developmental processes in eukaryotes, including axis formation, cell fate determination, spindle pole regulation, cell motility, and neuronal synaptic plasticity. Recently, a new conserved class of Lsm proteins, the Scd6 family, has been implicated in controlling mRNA function. Depletion or mutation of members of the Scd6 family, Caenorhabditis elegans CAR-1 and Drosophila melanogaster trailer hitch, lead to a variety of developmental phenotypes, which in some cases can be linked to alterations in the endoplasmic reticulum (ER). Scd6/Lsm proteins are RNA binding proteins and are found in RNP complexes associated with translational control of mRNAs, and these complexes can colocalize with the ER. These findings raise the possibility that localization and translational regulation of mRNAs at the ER plays a role in controlling the organization of this organelle.  相似文献   

3.
4.
Xenopus r-protein mRNAs are known to be coordinately regulated at the translational level. To find out if RNA/protein interactions are involved in this control mechanism, we have characterized the particles containing the translationally repressed rp-mRNA and we have investigated the proteins that specifically bind to this type of mRNA. By sedimentation analysis and isopycnic centrifugation we have found that the repressed rp-mRNAs are assembled in slow sedimenting complexes where the RNA is prevalent over the protein mass (2.3 to 1). This composition is maintained also after in vitro reconstitution of the particle. We carried out also a detailed analysis of in vitro RNA/protein complex formation by focusing our attention on the 5'UTR, very similar in different rp-mRNAs and important in the translational regulation. We describe specific interactions of L1 mRNA with four proteins. The binding site of two of them, 57 kD and 47 kD, is in the typical pyrimidine sequence at the 5' end and is position dependent. Proteins of the same size interact also with the analogous region of r-protein S1 and L14 mRNA, not with unrelated RNAs. Binding of two other proteins, 31 kD and 24 kD, in the downstream region of the 5'UTR was also observed. The most evident 57 kD protein has been partially purified. Although the binding of these proteins to the r-protein mRNA 5'UTR is specific, their involvement in the translation regulation remains to be proved.  相似文献   

5.
6.
Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.  相似文献   

7.
The pentatricopeptide repeat (PPR) protein family, which is particularly prevalent in plants, includes many sequence‐specific RNA‐binding proteins involved in all aspects of organelle RNA metabolism, including RNA stability, processing, editing and translation. PPR proteins consist of a tandem array of 2‐30 PPR motifs, each of which aligns to one nucleotide in the RNA target. The amino acid side chains at two or three specific positions in each motif confer nucleotide specificity in a predictable and programmable manner. Thus, PPR proteins appear to provide an extremely promising opportunity to create custom RNA‐binding proteins with tailored specificity. We summarize recent progress in understanding RNA recognition by PPR proteins, with a particular focus on potential applications of PPR‐based tools for manipulating RNA, and on the challenges that remain to be overcome before these tools may be routinely used by the scientific community.  相似文献   

8.
9.
10.
11.
12.
It has been shown previously that Drosophila cells infected with black beetle virus synthesize an early viral protein, protein A, a putative element of the viral RNA polymerase. Synthesis of protein A declines sharply by 6 h postinfection, whereas synthesis of viral coat protein alpha continues for at least 14 h. The early shutoff in protein A synthesis occurred despite the presence of equimolar proportions of the mRNAs for proteins A and alpha, RNAs 1 and 2, respectively. We have now been able to mimic this translational discrimination in a cell-free protein-synthesizing system prepared from infected or uninfected Drosophila cells, thus allowing further analysis of the mechanism by which translation of RNA 1 is selectively turned off. The results revealed no evidence for control by virus-encoded proteins or by virus-induced modification of mRNAs by the cell-free system. Rather, with increasing RNA concentration, viral RNA 1 was outcompeted by its genomic partner, RNA 2. This suggests that the early shutoff in intracellular synthesis of protein A is due to decreasing ability of RNA 1 to compete for a rate-controlling translational factor(s) as the concentration of viral RNAs accumulates within the infected cell.  相似文献   

13.
Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear. Here we used a combination of affinity chromatography, RNAse-protection, deep-sequencing and bioinformatic analyses to identify mRNAs differentially associated to hStau1 or a mutant protein unable to bind RNA and, in this way, defined a collection of mRNAs specifically associated to wt hStau1. A common sequence signature consisting of two opposite-polarity Alu motifs was present in the hStau1-associated mRNAs and was shown to be sufficient for binding to hStau1 and hStau1-dependent stimulation of protein expression. Our results unravel how hStau1 identifies a wide spectrum of cellular target mRNAs to control their localization, expression and fate.  相似文献   

14.
15.
16.
17.
In the absence of Rev or the Rev-responsive element, the Rev-dependent human immunodeficiency virus type 1 (HIV-1) RNAs do not behave as mRNAs; rather, they exhibit nuclear defects in splicing and/or nuclear export and cytoplasmic defects in stability and translation. A translational initiation factor, eIF-5A, has recently been shown to bind specifically to the Rev activation domain. As the binding of poly(A)-binding protein 1 (PAB1) to the poly(A) tail of mRNAs is involved in both the stability and translation of cytoplasmic mRNAs, we investigated whether Rev might influence the association of PAB1 with cytoplasmic HIV-1 RNAs. Antibodies were generated against PAB1. We used these antibodies in an immunoprecipitation assay to detect specific binding of PAB1 to cytoplasmic mRNAs. We found that in the presence of Rev, PAB1 was associated with Rev-dependent and Rev-independent RNAs in the cytoplasm of transfected cells. However, in the absence of functional Rev, we found little or no PAB1 associated with Rev-dependent RNAs. These RNAs were capable of binding PAB1 in vitro. These results demonstrate that HIV-1 RNAs are defective in PAB1 association in the absence of Rev.  相似文献   

18.
We demonstrate that a bacteriophage protein and a spliceosomal protein can be converted into eukaryotic translational repressor proteins. mRNAs with binding sites for the bacteriophage MS2 coat protein or the spliceosomal human U1A protein were expressed in human HeLa cells and yeast. The presence of the appropriate binding protein resulted in specific, dose-dependent translational repression when the binding sites were located in the 5' untranslated region (UTR) of the reporter mRNAs. Neither mRNA export from the nucleus to the cytoplasm nor mRNA stability was demonstrably affected by the binding proteins. The data thus reveal a general mechanism for translational regulation: formation of mRNA-protein complexes in the 5' UTR controls translation initiation by steric blockage of a sensitive step in the initiation pathway. Moreover, the findings establish the basis for novel strategies to study RNA-protein interactions in vivo and to clone RNA-binding proteins.  相似文献   

19.
In male germ cells many mRNAs are sequestered by proteins into translationally silent messenger ribo-nucleoprotein (mRNP) particles. These masked paternal mRNAs are stored and translated at specific times of germ cell development. Little is known about the mammalian testicular mRNA masking proteins bound to non-polysomal mRNAs. In this report, the major proteins binding to non-polysomal testicular mRNAs were isolated and analyzed. The two predominant proteins identified were: a Y-box protein (MSY2), the mammalian homolog to the Xenopus oocyte masking protein FRGY2/mRNP3+4, and a poly(A) binding protein. A kinase activity was also found associated with these non-polysomal RNAs. The kinase co-immunoprecipitates with MSY2 and phosphorylates MSY2 in vitro. The MSY2 associated kinase is not casein kinase 2, the kinase believed to phosphorylate mRNP3+4 in oocytes, but a yet unidentified kinase. MSY2 was found to be phosphorylated in vivo and MSY2 dephosphorylation led to a decrease in its affinity to bind RNA as judged by northwestern blotting. Therefore, testicular masked mRNAs may be regulated by the phosphorylation state of MSY2. Reconstitution experiments in which non-polysomal mRNA-binding proteins are dissociated from their RNAs and allowed to bind to exogenous mRNAs suggest that MSY2 binds RNA in a sequence-independent fashion. Furthermore, association of the non-polysomal derived proteins to exogenous non-specific mRNAs led to their translational repression in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号