首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Organogenesis is a complex developmental process, which requires tight regulation of selector gene expression to specify individual organ types. The Pax6 homolog Eyeless (Ey) is an example of such a factor and its expression pattern reveals it is dynamically controlled during development. Ey?s paralog Twin of eyeless (Toy) induces its expression during embryogenesis, and the two genes are expressed in nearly identical patterns during the larval stages of development. While Ey must be expressed to initiate retinal specification, it must subsequently be repressed behind the morphogenetic furrow to allow for neuronal differentiation. Thus far, a few factors have been implicated in this repression including the signaling pathways Hedgehog (Hh) and Decapentaplegic (Dpp), and more recently downstream components of the retinal determination gene network (RDGN) Sine oculis (So), Eyes absent (Eya), and Dachshund (Dac). Homeodomain-interacting protein kinase (Hipk), a conserved serine–threonine kinase, regulates numerous factors during tissue patterning and development, including the Hh pathway. Using genetic analyses we identify Hipk as a repressor of both Toy and Ey and show that it may do so, in part, through Hh signaling. We also provide evidence that Ey repression is a critical step in ectopic eye development and that Hipk plays an important role in this process. Because Ey repression within the retinal field is a critical step in eye development, we propose that Hipk is a key link between eye specification and patterning.  相似文献   

5.
6.
eyeless (ey) is a key regulator of the eye development pathway in Drosophila. Ectopic expression of ey can induce the expression of several eye-specification genes (eya, so, and dac) and induce eye formation in multiple locations on the body. However, ey does not induce eye formation everywhere where it is ectopically expressed, suggesting that EY needs to collaborate with additional factors for eye induction. We examined ectopic eye induction by EY in the wing disc and found that eye induction was spatially restricted to the posterior compartment and the anterior-posterior (A/P) compartmental border, suggesting a requirement for both HH and DPP signaling. Although EY in the anterior compartment induced dpp and dac, these were not sufficient for eye induction. Coexpression experiments show that EY needs to collaborate with high level of HH and DPP to induce ectopic eye formation. Ectopic eye formation also requires the activation of an eye-specific enhancer of the endogenous hh gene.  相似文献   

7.
8.
Bui QT  Zimmerman JE  Liu H  Bonini NM 《Genetics》2000,155(2):709-720
The eyes absent (eya) gene is critical to eye formation in Drosophila; upon loss of eya function, eye progenitor cells die by programmed cell death. Moreover, ectopic eya expression directs eye formation, and eya functionally synergizes in vivo and physically interacts in vitro with two other genes of eye development, sine oculis and dachshund. The Eya protein sequence, while highly conserved to vertebrates, is novel. To define amino acids critical to the function of the Eya protein, we have sequenced eya alleles. These mutations have revealed that loss of the entire Eya Domain is null for eya activity, but that alleles with truncations within the Eya Domain display partial function. We then extended the molecular genetic analysis to interactions within the Eya Domain. This analysis has revealed regions of special importance to interaction with Sine Oculis or Dachshund. Select eya missense mutations within the Eya Domain diminished the interactions with Sine Oculis or Dachshund. Taken together, these data suggest that the conserved Eya Domain is critical for eya activity and may have functional subregions within it.  相似文献   

9.
10.
Insect and vertebrate eyes differ in their formation, cellular composition, neural connectivity, and visual function. Despite this diversity, Drosophila atona and its vertebrate Ortholog in the eye, Ath5, each regulate determination of the first retinal neuron class-R8 photo-receptors and retinal ganglion cells (RGCs)-in their respective organisms. We have performed a cross-species functional comparison of these genes. In ato mutant Drosophila, ectopic Xenopus Ath5 (Xath5) rescues photoreceptor cell development comparably with atonaI. In contrast, mouse Ath5 (Math5) induces formation of very few ommatidia, and most of these lack R8 cells. In the developing frog eye, ectopic atonal, like Xath5, promotes the differentiation RGCs. Despite strong conservation of atonaI, Xath5, and Math5 structure and shared function, other factors must contribute to the species specificity of retinal neuron determination. These observations suggest that the atonaI family may occupy a position in a gene hierarchy where differences in gene regulation or function can be correlated with evolutionary diversity of eye development.  相似文献   

11.
12.
13.
14.
15.
16.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

17.
Drosophila dachshund (dac) interacts with sine oculis (so), eyes absent (eya) and eyeless (ey) to control compound eye development. We have cloned three zebrafish dac homologues, dachA, dachB and dachC, which are expressed widely, in distinct but overlapping patterns. Expression of all three is found in sensory organs, the central nervous system and pectoral fin buds. dachA is also expressed strongly in the somites and dachC in the neural crest and pronephros. These expression domains overlap extensively with those of zebrafish pax, eya and six family members, the homologues of Drosophila ey, eya and so, respectively. This is consistent with the proposal that Dach, Eya, Six and Pax family members may form networks, similar to that found in the fly eye, in the development of many vertebrate organs.  相似文献   

18.
We have analyzed the function of the Decapentaplegic (Dpp) and Hedgehog (Hh) signaling pathways in partitioning the dorsal head neurectoderm of the Drosophila embryo. This region, referred to as the anterior brain/eye anlage, gives rise to both the visual system and the protocerebrum. The anlage splits up into three main domains: the head midline ectoderm, protocerebral neurectoderm and visual primordium. Similar to their vertebrate counterparts, Hh and Dpp play an important role in the partitioning of the anterior brain/eye anlage. Dpp is secreted in the dorsal midline of the head. Lowering Dpp levels (in dpp heterozygotes or hypomorphic alleles) results in a 'cyclops' phenotype, where mid-dorsal head epidermis is transformed into dorsolateral structures, i.e. eye/optic lobe tissue, which causes a continuous visual primordium across the dorsal midline. Absence of Dpp results in the transformation of both dorsomedial and dorsolateral structures into brain neuroblasts. Regulatory genes that are required for eye/optic lobe fate, including sine oculis (so) and eyes absent (eya), are turned on in their respective domains by Dpp. The gene zerknuellt (zen), which is expressed in response to peak levels of Dpp in the dorsal midline, secondarily represses so and eya in the dorsomedial domain. Hh and its receptor/inhibitor, Patched (Ptc), are expressed in a transverse stripe along the posterior boundary of the eye field. As reported previously, Hh triggers the expression of determinants for larval eye (atonal) and adult eye (eyeless) in those cells of the eye field that are close to the Hh source. Eya and So, which are induced by Dpp, are epistatic to the Hh signal. Loss of Ptc, as well as overexpression of Hh, results in the ectopic induction of larval eye tissue in the dorsal midline (cyclopia). We discuss the similarities between vertebrate systems and Drosophila with regard to the fate map of the anterior brain/eye anlage, and its partitioning by Dpp and Hh signaling.  相似文献   

19.
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号