首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Expression of the glycoprotein hormone alpha-subunit gene occurs in the pituitary of all mammals but in placenta of only primates and horses. In humans, two different elements, termed upstream regulatory element (URE) and cAMP response element (CRE), are required for placenta-specific expression of the alpha-subunit gene. The URE binds a protein unique to placenta whereas the CRE binds a ubiquitous protein. Comparative analysis of the promoter-regulatory region of the alpha-subunit gene from a number of mammals indicates that a functional URE has been retained and suggests the potential for placenta-specific expression. Indirect evidence also indicates that the URE-binding protein has been conserved, even in placenta from mammals that fail to express the alpha-subunit gene. Lack of expression of the alpha-subunit gene in placenta of rodents and cattle can be traced to a single nucleotide change that renders the CRE-like sequence of these genes incapable of binding the protein that confers responsiveness to cAMP. In contrast, although expression of the alpha-subunit gene occurs in horse placenta, the promoter-regulatory region lacks a functional CRE but appears to retain a functional URE. This suggests that either a different accessory element and cognate protein interacts with the horse URE to provide placenta-specific expression or that a completely different set of regulatory elements is required for placenta-specific expression in horses.  相似文献   

4.
The glycoprotein hormone alpha-gene is preferentially expressed in placental cell lines, but it is also expressed in several other cell lines indicating that the differential activity of the alpha-gene regulatory elements in various cell types is more quantitative than qualitative. The 5'-flanking region of the alpha-gene contains several distinct DNA regulatory sequences including an upstream regulatory element [(URE) -181 to -150 base pairs (bp)] that stimulates basal expression and an 18 bp twice-repeated cAMP-responsive element [(CRE) -146 to -111 bp]. We constructed an array of fusion genes containing the URE and/or the CRE linked to different truncated promoters [alpha-gene, somatostatin (SRIF), glucagon, Simian Virus 40]. These constructions were transiently expressed in placental, fibroblast, or islet cell lines to identify regulatory sequences involved in cell-specific expression as well as interactions between the URE, the CRE, and different promoter elements. The URE, CRE, and alpha-promoter elements contribute approximately 3-, 6-, and 5-fold, respectively, to preferential expression in JEG-3 cells. In JEG-3 cells, the URE is strictly dependent on the CRE for activity, but it functions in a promoter-independent manner. In contrast, the CRE is markedly promoter dependent. When linked to heterologous enhancers, the alpha-promoter is more active in JEG-3 cells than in other cell lines, thereby contributing substantially to preferential expression in placental cells. Although the CREs derived from the alpha and SRIF genes both activate expression of the alpha promoter, only the alpha CRE activates the SRIF promoter in JEG-3 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Expression of the glycoprotein hormone alpha-subunit gene occurs in the pituitaries of all mammals and in the placentas of primates and horses. In humans, tandem cAMP response elements (CREs), located in the proximal promoter-regulatory region of the alpha-subunit gene, act together with an adjacent upstream regulatory element to confer placenta-specific expression. Here, we report that the alpha-subunit genes of Old World Monkeys contain a single functional CRE. This suggests that tandem CREs are unique to higher primates and humans and are not absolutely required for placenta-specific expression. In contrast, the comparable promoter-regulatory region of the horse alpha-subunit gene lacks a functional CRE but appears to retain a functional upstream regulatory element. This suggests that acquisition of placenta-specific expression of the alpha-subunit gene occurred independently in these distantly related mammals. As a result, different combinations of cis-acting elements may explain why expression of the alpha-subunit gene only occurs in placenta of primates and horses.  相似文献   

6.
7.
The single-copy gene encoding the alpha subunit of glycoprotein hormones is expressed in the pituitaries of all mammals and in the placentas of only primates and horses. We have systematically analyzed the promoter-regulatory elements of the human and bovine alpha-subunit genes to elucidate the molecular mechanisms underlying their divergent patterns of tissue-specific expression. This analysis entailed the use of transient expression assays in a chorionic gonadotropin-secreting human choriocarcinoma cell line, protein-DNA binding assays, and expression of chimeric forms of human or bovine alpha subunit genes in transgenic mice. From the results, we conclude that placental expression of the human alpha-subunit gene requires a functional cyclic AMP response element (CRE) that is present as a tandem repeat in the promoter-regulatory region. In contrast, the promoter-regulatory region of the bovine alpha-subunit gene, as well as of the rat and mouse genes, was found to contain a single CRE homolog that differed from its human counterpart by a single nucleotide. This difference substantially reduced the binding affinity of the bovine CRE homolog for the nuclear protein that bound to the human alpha CRE and thereby rendered the bovine alpha-subunit promoter inactive in human choriocarcinoma cells. However, conversion of the bovine alpha CRE homolog to an authentic alpha CRE restored activity to the bovine alpha-subunit promoter in choriocarcinoma cells. Similarly, a human but not a bovine alpha transgene was expressed in placenta in transgenic mice. Thus, placenta-specific expression of the human alpha-subunit gene may be the consequence of the recent evolution of a functional CRE. Expression of the human alpha transgene in mouse placenta further suggests that evolution of placenta-specific trans-acting factors preceded the appearance of this element. Finally, in contrast to their divergent patterns of placental expression, both the human and bovine alpha-subunit transgenes were expressed in mouse pituitary, indicating differences in the composition of the enhancers required for pituitary- and placenta-specific expression.  相似文献   

8.
9.
10.
11.
A cAMP regulatory element (CRE) at nucleotide position -170 of the fibronectin gene was characterized previously (Dean, D. C., Blakeley, M. S., Newby, R. F., Ghazal, P., Hennighausen, L., and Bourgeois, S. (1989) Mol. Cell. Biol. 9, 1498-1506). Here we identify two additional low affinity CREs at nucleotide positions -260 and -415 which differ in sequence by 1 base pair. Interestingly, these CREs did not compete for binding of nuclear proteins in gel retardation assays and partial tryptic digestion of protein-DNA complexes produced a different pattern with each CRE, indicating that they bind different proteins. CRE (-170) competed for binding of proteins to both CREs, suggesting that it may represent a composite of the two elements. CRE (-415) competed effectively for binding of nuclear proteins to the somatostatin gene CRE, suggesting that, like the somatostatin CRE, it binds the nuclear protein CREB. On the other hand, CRE (-260) appears to bind the nuclear protein PEA-2, which also binds a site in the polyoma virus enhancer. In summary, disruption of dyad symmetry in the 3' region of the CRE, as occurs with CRE (-260) and CRE (-415), results in a lower affinity site and may also change the specificity for different nuclear proteins.  相似文献   

12.
Promoter elements important for basal and cyclic AMP (cAMP)-regulated expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been identified by analysis of a series of PEPCK promoter mutations in transfection experiments. Fusion genes containing wild-type and mutated PEPCK promoter sequences from -600 to +69 base pairs (bp) fused to the coding sequence for chloramphenicol acetyltransferase were studied. Internal deletion mutations that replaced specific bases with a 10-bp linker within the region from -129 bp to -18 bp of the PEPCK promoter were examined. In addition, wild-type and mutated DNA templates were used as probes in DNase I protection experiments to determine sites of protein-DNA interaction. The PEPCK promoter contains a binding site for nuclear factor 1-CAAT. Deletion of the 5' end of this binding site reduced the size of the DNase I footprint in this region but had no effect on promoter activity. In contrast, deletion or disruption of the 3' end of this binding site completely eliminated protein binding and reduced promoter activity by 50%. Deletion of core sequences of the cAMP regulatory element (CRE) resulted in loss of cAMP responsiveness and an 85% decrease in basal promoter activity, indicating that the CRE also functions as a basal stimulatory element. Mutation of the core sequence of the CRE resulted in loss of the DNase I footprint over the CRE. Internal deletions flanking the CRE showed no loss of induction by cAMP but did have reduced promoter activity. This delimits the CRE to an 18-bp region between nucleotides -100 and -82. Analysis of mutations that disrupted bases between the CRE and the initiation site identified a basal inhibitory element adjacent to a basal stimulatory element, both located just 3' of the CRE, as well as a basal stimulatory element coincident with the TATA consensus sequence centered at -27. These data demonstrate that several cis-acting elements are located within 130 nucleotides of the initiation site of the PEPCK gene and that the CRE is essential for both basal promoter activity and cAMP-regulated expression of this gene.  相似文献   

13.
14.
15.
U Strhle  W Schmid    G Schütz 《The EMBO journal》1988,7(11):3389-3395
  相似文献   

16.
17.
The EF-1 alpha O gene of Xenopus laevis is a stage-specific gene, being transcribed in oogonia and oocytes, but not in postmeiotic germ cells and terminally differentiated cells. We found that two trans-acting factors from oocyte nuclear extract are able to interact with a DNA sequence in the 5'-upstream region of the EF-1 alpha O gene. Methylation interference experiments suggested that the two factors recognised the same DNA element. Gel retardation assays indicated that part of the protein binding site could be confined to a 21 bp sequence, located between -51 and -72, relative to the cap site. Interestingly, this region shares great homology to a negative regulatory segment in the promoter of the TFIIIA gene, another developmentally regulated gene.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号