首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The model presented here modifies a susceptible-infected (SI) host–pathogen model to determine the influence of mating system on the outcome of a host–pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.  相似文献   

2.
Mating systems in plants are known to be highly labile traits, with frequent transitions from outcrossing to selfing. The genetic basis for breakdown in self-incompatibility (SI) systems has been studied, but data on variation in selfing rates in species for which the molecular basis of SI is known are rare. This study surveyed such variation in Arabidopsis lyrata (Brassicaceae), which is often considered an obligately outcrossing species, to examine the causes and genetic consequences of changes in its breeding system. Based on controlled self-pollinations in the greenhouse, three populations from the Great Lakes region of North America included a minority of self-compatible (SC) individuals, while two showed larger proportions of SC individuals and all populations contained some individuals capable of setting selfed seeds. Loss of SI was not associated with particular haplotypes at the S-locus (as estimated by alleles amplified at the SRK locus, the gene controlling female specificity) and all populations contained similar numbers of SRK alleles, suggesting that some other genetic factor is responsible for modifying the SI reaction. The loss of SI has resulted in an effective shift in the mating system, as the two populations with a high frequency of SC individuals showed significantly lower microsatellite-based multilocus outcrossing rates and higher inbreeding coefficients than the other populations. Based on microsatellites, observed heterozygosities and genetic diversity were also significantly depressed in these populations. These findings provide the unique opportunity to examine in detail the consequences of mating system changes within a species with a well-characterized SI system.  相似文献   

3.
Western redcedar (Thuja plicata, Cupressaceae) is a self-fertile conifer with a mixed mating system and significant variation for outcrossing among populations. In this paper, we conducted a fine-scale study of mating system variation to identify correlates of outcrossing in natural populations. We examined variation for outcrossing within and among individual trees, and describe a new method to estimate outcrossing using bulked DNA samples. Bulking (assaying DNA tissues from several individuals simultaneously) increases the experimental power without increasing the experimental effort. We sampled 80 trees from four natural populations in southwestern British Columbia. From each tree, we sampled from up to six crown positions (three heights and inner vs outer branches). From each position, two samples of three seedlings each were bulked before DNA extractions. Using four microsatellite loci, we obtained outcrossing rates for each tree and for each of the six crown positions. We found individual tree selfing rates to increase with tree height in all four populations, but selfing rates did not differ among crown positions. The higher selfing rate of larger trees is probably due to their greater proportional contribution to local pollen clouds. Individual tree outcrossing rates ranged from 22 to 100% and the population outcrossing rates from 66 to 78%. Missed alleles due to bulking and the estimation method used both cause a downward bias in outcrossing rates, so that these estimates are probably lower than the actual outcrossing rates. Nevertheless, the trends we observed are not affected by systematic biases of estimation.  相似文献   

4.
Enjalbert J  David JL 《Genetics》2000,156(4):1973-1982
Using multilocus individual heterozygosity, a method is developed to estimate the outcrossing rates of a population over a few previous generations. Considering that individuals originate either from outcrossing or from n successive selfing generations from an outbred ancestor, a maximum-likelihood (ML) estimator is described that gives estimates of past outcrossing rates in terms of proportions of individuals with different n values. Heterozygosities at several unlinked codominant loci are used to assign n values to each individual. This method also allows a test of whether populations are in inbreeding equilibrium. The estimator's reliability was checked using simulations for different mating histories. We show that this ML estimator can provide estimates of outcrossing rates for the final generation outcrossing rate (t(0)) and a mean of the preceding rates (t(p)) and can detect major temporal variation in the mating system. The method is most efficient for low to intermediate outcrossing levels. Applied to nine populations of wheat, this method gave estimates of t(0) and t(p). These estimates confirmed the absence of outcrossing t(0) = 0 in the two populations subjected to manual selfing. For free-mating wheat populations, it detected lower final generation outcrossing rates t(0) = 0-0.06 than those expected from global heterozygosity t = 0.02-0.09. This estimator appears to be a new and efficient way to describe the multilocus heterozygosity of a population, complementary to Fis and progeny analysis approaches.  相似文献   

5.
S. T. Schultz  J. H. Willis 《Genetics》1995,141(3):1209-1223
We use mutation-selection recursion models to evaluate the relative contributions of mutation and inbreeding history to variation among individuals in inbreeding depression and the ability of experiments to detect associations between individual inbreeding depression and mating system genotypes within populations. Poisson mutation to deleterious additive or recessive alleles generally produces far more variation among individuals in inbreeding depression than variation in history of inbreeding, regardless of selfing rate. Moreover, variation in inbreeding depression can be higher in a completely outcrossing or selfing population than in a mixed-mating population. In an initially random mating population, the spread of a dominant selfing modifier with no pleiotropic effects on male outcross success causes a measurable increase in inbreeding depression variation if its selfing rate is large and inbreeding depression is caused by recessive lethals. This increase is observable during a short period as the modifier spreads rapidly to fixation. If the modifier alters selfing rate only slightly, it fails to spread or causes no measurable increase in inbreeding depression variance. These results suggest that genetic associations between mating loci and inbreeding depression loci could be difficult to demonstrate within populations and observable only transiently during rapid evolution to a substantially new selfing rate.  相似文献   

6.
Alan Hastings 《Genetics》1985,109(1):215-228
The equilibrium structure of two-locus, two-allele models with very large selfing rates is found using perturbation techniques. For free recombination, r = 1/2, the following results hold. If the heterozygotes do not have at least an approximate 30% advantage in fitness relative to homozygotes, a stable equilibrium with all alleles present is possible only if all of the homozygote fitnesses differ at most by approximately the outcrossing rate, t, and all stable polymorphic equilibria have disequilibrium values, D, that are at most on the order of the outcrossing rate. Once the heterozygote fitnesses are above the threshold, there are stable equilibria possible with D near its maximum possible value. The results show that the observed disequilibria in highly selfed plant populations are not likely to result from selection leading to an equilibrium.  相似文献   

7.
Ceiba pentandra is a tropical tree with high rates of selfing in some populations. In mixed‐mating species, variation in selfing is due to changes in adult density or variability of incompatibility systems. The effect of spatial isolation and phenology on selfing rates and pollen flow distances was analyzed using microsatellites in a fragmented population of Ceiba pentandra, in southern Costa Rica. Adult trees within a heterogeneous landscape were classified as grouped or isolated. We compared selfing rates at the individual level, between isolation conditions and 2 yr (2007, 2009), which differed in the number of flowering individuals. Mixed mating was estimated in both years (tm = 0.624–0.759). Trees mated predominantly by outcrossing, while only a few trees reproduced through selfing. Spatial isolation did not significantly affect outcrossing rates. The progeny of grouped trees was mostly sired by near‐neighbors (<1 km) and by long‐distance pollen flow events in isolated trees. A reduction in the number of flowering individuals in 2009 reduced near‐neighbor matings, increased selfing in grouped trees, and decreased the number of unsampled sires in the progeny. Comparing selfing rates on individuals that flowered in both reproductive periods suggests a flexible mating system. Variation in self‐fertilization rates in this population appears to depend on variation of individual traits, such as genetic variability in self‐incompatibility genes, but it is independent of landscape heterogeneity. In contrast, pollen flow distances depend on local tree density as bats concentrate their foraging between near individuals to maximize energy efficiency.  相似文献   

8.
Isolation allows populations to diverge and to fix different alleles. Deleterious alleles that reach locally high frequencies contribute to genetic load, especially in inbred or selfing populations, in which selection is relaxed. In the event of secondary contact, the recessive portion of the genetic load is masked in the hybrid offspring, producing heterosis. This advantage, only attainable through outcrossing, should favour evolution of greater outcrossing even if inbreeding depression has been purged from the contributing populations. Why, then, are selfing‐to‐outcrossing transitions not more common? To evaluate the evolutionary response of mating system to heterosis, we model two monomorphic populations of entirely selfing individuals, introduce a modifier allele that increases the rate of outcrossing and investigate whether the heterosis among populations is sufficient for the modifier to invade and fix. We find that the outcrossing mutation invades for many parameter choices, but it rarely fixes unless populations harbour extremely large unique fixed genetic loads. Reversions to outcrossing become more likely as the load becomes more polygenic, or when the modifier appears on a rare background, such as by dispersal of an outcrossing genotype into a selfing population. More often, the outcrossing mutation instead rises to moderate frequency, which allows recombination in hybrids to produce superior haplotypes that can spread without the mutation's further assistance. The transience of heterosis can therefore explain why secondary contact does not commonly yield selfing‐to‐outcrossing transitions.  相似文献   

9.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

10.
Genetic compatibility, nonspecific defenses, and environmental effects determine parasite resistance. Host mating system (selfing vs. outcrossing) should be important for parasite resistance because it determines the segregation of alleles at the resistance loci and because inbreeding depression may hamper immune defenses. Individuals of a mixed mating hermaphroditic freshwater snail, Lymnaea ovata, are commonly infected by a digenetic trematode parasite, Echinoparyphium recurvatum. We examined covariation between quantitative resistance to novel parasites and mating system by exposing snail families from four populations that differed by their inbreeding coefficients. We found that resistance was unrelated to inbreeding coefficient of the population, suggesting that the more inbred populations did not carry higher susceptibility load than the less inbred populations. Most of the variation in resistance was expressed among the families within the populations. In the population with the lowest inbreeding coefficient, resistance increased with outcrossing rate of the family, as predicted if selfing had led to inbreeding depression. In the other three populations with higher inbreeding coefficients, resistance was unrelated to outcrossing rate. The results suggest that in populations with higher inbreeding some of the genetic load has been purged, uncoupling the predicted relationship between outcrossing rate and resistance. Snail families also displayed crossing reaction norms for resistance when tested in two environments that presented low and high immune challenge, suggesting that genotype-by-environment interactions are important for parasite resistance.  相似文献   

11.
I present analytical predictions for the equilibrium inbreeding load expected in a population under mutation, selection, and a regular mating system for any population size and for any magnitude and recessivity of the deleterious effects. Using this prediction, I deduce the relative fitness of mutant alleles with small effect on selfing to explore the situations where selfing or outcrossing are expected to evolve. The results obtained are in agreement with previous literature, showing that natural selection is expected to lead to stable equilibria where populations show either complete outcrossing or complete selfing, and that selfing is promoted by large deleterious mutation rates. I find that the evolution of selfing is favored by a large recessivity of deleterious effects, while the magnitude of homozygous deleterious effects only becomes relevant in relatively small populations. This result contradicts the standard assumption that purging in large populations will only promote selfing when homozygous deleterious effects are large, and implies that previously published results obtained assuming lethal mutations in large populations can be extrapolated to nonlethal alleles of similar recessivity. This conclusion and the general approach used in this analysis can be useful in the study of the evolution of mating systems.  相似文献   

12.
The formation of ecotypes has been invoked as an important driver of postglacial biodiversity, because many species colonized heterogeneous habitats and experienced divergent selection. Ecotype formation has been predominantly studied in outcrossing taxa, while far less attention has been paid to the implications of mating system shifts. Here, we addressed whether substrate‐related ecotypes exist in selfing and outcrossing populations of Arabidopsis lyrata subsp. lyrata and whether the genomic footprint differs between mating systems. The North American subspecies colonized both rocky and sandy habitats during postglacial range expansion and shifted the mating system from predominantly outcrossing to predominantly selfing in a number of regions. We performed an association study on pooled whole‐genome sequence data of 20 selfing or outcrossing populations, which suggested genes involved in adaptation to substrate. Motivated by enriched gene ontology terms, we compared root growth between plants from the two substrates in a common environment and found that plants originating from sand grew roots faster and produced more side roots, independent of mating system. Furthermore, single nucleotide polymorphisms associated with substrate‐related ecotypes were more clustered among selfing populations. Our study provides evidence for substrate‐related ecotypes in A. lyrata and divergence in the genomic footprint between mating systems. The latter is the likely result of selfing populations having experienced divergent selection on larger genomic regions due to higher genome‐wide linkage disequilibrium.  相似文献   

13.
As in plants, fungi exhibit wide variation in reproductive strategies and mating systems. Although most sexually reproducing fungi are either predominantly outcrossing or predominantly selfing, there are some notable exceptions. The haploid, ascomycete chestnut blight pathogen, Cryphonectria parasitica, has previously been shown to have a mixed mating system in one population in USA. In this report, we show that both selfing and outcrossing occur in 10 additional populations of C. parasitica sampled from Japan, Italy, Switzerland and USA. Progeny arrays from each population were assayed for segregation at vegetative incompatibility (vic) and DNA fingerprinting loci. Outcrossing rates (t(m)) were estimated as the proportion of progeny arrays showing segregation at one or more loci, corrected by the probability of nondetection of outcrossing (alpha). Estimates of t(m) varied from 0.74 to 0.97, with the lowest rates consistently detected in USA populations (0.74-0.78). Five populations (four in USA and one in Italy) had t(m) significantly less than 1, supporting the conclusion that these populations exhibit mixed mating. The underlying causes of variation in outcrossing rates among populations of C. parasitica are not known, but we speculate that--as in plants--outcrossing is a function of ecological, demographic and genetic factors.  相似文献   

14.
In this study, we examine the demographic consequences of mixed mating and explore the interactive effects of vegetative herbivory and mating system for population dynamics of Impatiens capensis, a species with an obligate mixed mating system (i.e., individuals produce both obligately selfing cleistogamous and facultatively outcrossing chasmogamous flowers). In two natural populations, we followed seeds derived from cleistogamous and chasmogamous flowers subject to different herbivory levels throughout their life cycle. Using a mating system-explicit projection matrix model, we found that mating system types differed in important vital rates. Cleistogamous individuals had higher rates of germination than did chasmogamous individuals, whereas chasmogamous individuals expressed a fecundity advantage over cleistogamous individuals. In addition, population growth was most sensitive to changes in vital rates of cleistogamous individuals, indicating the demographic importance of selfing for these populations. Herbivory also had demographic consequences; a 33%-49% reduction in herbivory caused the population growth rates to increase by 104%-132%, primarily because of effects on vital rates of selfed individuals. Our results not only uncover a novel consequence of mating system expression, that is, mating system influences population dynamics, but also shed light on the role of herbivores in maintaining mixed mating.  相似文献   

15.
BACKGROUND: Caenorhabditis elegans is a major model system in biology, yet very little is known about its biology outside the laboratory. In particular, its unusual mode of reproduction with self-fertile hermaphrodites and facultative males raises the question of its frequency of outcrossing in natural populations. RESULTS: We describe the first analysis of C. elegans individuals sampled directly from natural populations. C. elegans is found predominantly in the dauer stage and with a very low frequency of males versus hermaphrodites. Whereas C. elegans was previously shown to display a low worldwide genetic diversity, we find by comparison a surprisingly high local genetic diversity of C. elegans populations; this local diversity is contributed in great part by immigration of new alleles rather than by mutation. Our results on heterozygote frequency, male frequency, and linkage disequilibrium furthermore show that selfing is the predominant mode of reproduction in C. elegans natural populations but that infrequent outcrossing events occur, at a rate of approximately 1%. CONCLUSIONS: Our results give a first insight in the biology of C. elegans in the natural populations. They demonstrate that local populations of C. elegans are genetically diverse and that a low frequency of outcrossing allows for the recombination of these locally diverse genotypes.  相似文献   

16.
Cross‐fertilization is predicted to facilitate the short‐term response and the long‐term persistence of host populations engaged in antagonistic coevolutionary interactions. Consistent with this idea, our previous work has shown that coevolving bacterial pathogens (Serratia marcescens) can drive obligately selfing hosts (Caenorhabditis elegans) to extinction, whereas the obligately outcrossing and partially outcrossing populations persisted. We focused the present study on the partially outcrossing (mixed mating) and obligately outcrossing hosts, and analyzed the changes in the host resistance/avoidance (and pathogen infectivity) over time. We found that host mortality rates increased in the mixed mating populations over the first 10 generations of coevolution when outcrossing rates were initially low. However, mortality rates decreased after elevated outcrossing rates evolved during the experiment. In contrast, host mortality rates decreased in the obligately outcrossing populations during the first 10 generations of coevolution, and remained low throughout the experiment. Therefore, predominant selfing reduced the ability of the hosts to respond to coevolving pathogens compared to outcrossing hosts. Thus, we found that host–pathogen coevolution can generate rapid evolutionary change, and that host mating system can influence the outcome of coevolution at a fine temporal scale.  相似文献   

17.
Abstract The mating system of a population profoundly influences its evolution. Inbreeding alters the balance of evolutionary forces that determine the amount of genetic variation within a population. It redistributes that variation among individuals, altering heritabilities and genetic correlations. Inbreeding even changes the basic relationships between these genetic statistics and response to selection. If populations differing only in mating system are exposed to the same selection pressures, will they respond in qualitatively different ways? Here, we address this question by imposing selection on an index of two negatively correlated traits (flower size and development rate) within experimental populations that reproduce entirely by outcrossing, entirely by self‐fertilizing, or by a mixture of outcrossing and selfing. Entirely selfing populations responded mainly by evolving larger flowers whereas outcrossing populations also evolved more rapid development. Divergence occurred despite an equivalent selection regime and no direct effect of mating system on fitness. The study provides an experimental demonstration of how the interaction of selection, genetic drift, and mating system can produce dramatic short‐term changes in trait means, variances, and covariances.  相似文献   

18.
19.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

20.
普通野生稻小种群的交配系统与遗传多样性   总被引:2,自引:0,他引:2  
小种群的遗传动态是保育遗传学关注的核心问题之一,而种群遗传动态又与交配系统密切相关.普通野生稻(Oryza rufipogon Griff.)是具有重要经济价值的濒危物种,目前其种群规模都较小,研究其小种群交配系统与遗传变异性对普通野生稻的保护具有重要意义.运用7对SSR引物,对采自江西东乡普通野生稻小种群的36份种茎和其中20个家系共计601份子代进行了分析.结果显示:该种群的表观异交率为0.318,多位点法估计(MLTR)的多位点异交率为0.481;50%以上的子代共享亲本,非随机交配明显;东乡普通野生稻种群交配系统属于混合交配类型.比较亲本和子代种群的遗传变异性显示:子代种群比亲本种群遗传变异性更丰富;子代种群的杂合子不足与种群变小自交比例上升有关;而亲本种群杂合子过剩可能与杂合基因型的选择优势有关.这些结果说明创造条件扩大种群规模对普通野生稻的原生境保护显得尤为重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号