首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the signal transduction of dibutyryl cyclic adenosine monophosphate (dBcAMP) to stimulate the release of nitric oxide (NO) and interleukin-6 (IL-6) from J774 macrophages. These actions of dBcAMP were diminished by the presence of the inhibitors of protein kinase A (PKA), protein kinase C (PKC), p38 MAPK and nuclear factor-kappa B (NF-kappaB). In contrast, Go 6976 and PD98059 had no significant effects. Consistently, dBcAMP caused membrane translocation of PKCbetaII, delta, mu, lambda and zeta isoforms, and increased atypical protein kinase C (aPKC) and p38 MAPK activities. The nuclear translocation and DNA-binding study revealed that dBcAMP stimulated NF-kappaB, activator protein-1 (AP-1), and CAAT/enhancer-binding protein (c/EBPbeta). Via PKA, PKC and p38 MAPK-dependent signals, dBcAMP also induced inhibitory subunit of NF-kappaB (IkappaB) degradation, IkappaB kinase (IKK) activation, nuclear translocation of NF-kappaB subunit p65 and its association with the CREB-binding protein (CBP). These results illustrate that PKA activation in macrophages is able to stimulate PKC and p38 MAPK, which lead to IKK-dependent NF-kappaB activation and contribute to the induction of inducible nitric oxide synthase (iNOS) and IL-6 genes.  相似文献   

2.
3.
Substantial evidence suggests that MHC class II molecules play a critical role in transducing signals during B cell activation and differentiation. In addition, we previously found that cross-linking of MHC class II molecules using anti-MHC class II antibodies inhibited NF-kappaB activation in resting B cells isolated from mouse spleen. In this study, we investigated the mechanism of anti-MHC class II antibody-mediated inhibition of LPS-induced NF-kappaB activation using a resting B cell line, 38B9. We found that treatment with a corresponding anti-MHC class II antibody reduced the activation of NF-kappaB in LPS-stimulated 38B9 cells, treatment of the antibody mediated down-regulation of PKC and ERK/p38 MAP kinase pathways, and treatment with PKC inhibitors caused down-regulation of ERK and p38 MAP kinase activities in LPS-stimulated 38B9 cells. Our results suggest that the PKC and ERK/p38 MAP kinase pathways are regulated by anti-MHC class II antibodies, and that MHC class II molecules are actively involved in the signal transduction pathway in the resting B cell line, 38B9. Consequently, disruption of these pathways might contribute to the inhibition of LPS-induced NF-kappaB activation in 38B9 cells.  相似文献   

4.
Human endothelial cells (EC) express MHC class II molecules in vivo and are likely to be involved in presentation of antigens to CD4(+) T cells. We examined, at the single-cell level, EC presentation of superantigens to resting CD4(+) memory T cells. Within 2 h of adherence to class II+ EC early T cell activation is evidenced by translocation of nuclear factor of activated T cells (NFAT), surface expression of CD69, and synthesis of IFN-gamma and IL-2. Naive T cells are not activated. T cell activation is dependent on the prior induction of MHC class II molecules on EC and is blocked by antibodies to LFA-3 (CD58). Our data place EC along a spectrum of antigen-presenting ability. Activated B cells and macrophages trigger more cells to express cytokines than do EC and at lower antigen concentrations; EC are in turn, superior to fibroblasts or smooth muscle cells. Furthermore, the concept of activation thresholds for cytokine synthesis within T cells also extends to earlier activation events: NFAT translocation is relatively easy to trigger, as is CD69 expression; fewer cells can be triggered to express IFN-gamma and fewer still to express IL-2. EC may, therefore, contribute to a graded immune response by inducing qualitatively and quantitatively different responses than professional APC.  相似文献   

5.
6.
7.
8.
9.
NF-kappa B plays a critical role in coordinating the control of gene expression during monocyte/macrophage activation. In this report we describe our investigation of the mechanisms of LPS-induced NF-kappa B activation and IL-12 expression in murine peritoneal suppressor macrophages. Treatment of these macrophages with LPS induced I kappa B alpha degradation and NF-kappa B activation. EMSAs demonstrated that NF-kappa B bound to a cis-acting element located in the murine IL-12 p40 promoter. LPS signal transduction has been shown to involve a variety of signal pathways. The results in this paper indicate that LPS-induced NF-kappa B binding activity was independent of PKC, PKA, ERK, and p38 MAPK, but was regulated by proteasome. Furthermore, Proteasome Inhibitor I abolished the LPS-induced mRNA expression of IL-12 p35 and p40, and SB203580 reduced these mRNA levels, whereas the blockade of PKC, PKA, and ERK had little effect. These data demonstrate that the LPS-induced activation of proteasome. I kappa B. NF-kappa B and p38 MAPK signal pathways regulate the IL-12 expression in murine peritoneal suppressor macrophages.  相似文献   

10.
Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very similar to human multiple sclerosis. We have assessed cytokine gene activation upon Theiler's murine encephalomyelitis virus (TMEV) infection and potential mechanisms in order to delineate the early events in viral infection that lead to immune-mediated demyelinating disease. Infection of SJL/J primary astrocyte cultures induces selective proinflammatory cytokine genes (interleukin-12p40 [IL-12p40], IL-1, IL-6, tumor necrosis factor alpha, and beta interferon [IFN-beta]) important in the innate immune response to infection. We find that TMEV-induced cytokine gene expression is mediated by the NF-kappaB pathway based on the early nuclear NF-kappaB translocation and suppression of cytokine activation in the presence of specific inhibitors of the NF-kappaB pathway. Further studies show this to be partly independent of dsRNA-dependent protein kinase (PKR) and IFN-alpha/beta pathways. Altogether, these results demonstrate that infection of astrocytes and other CNS-resident cells by TMEV provides the early NF-kappaB-mediated signals that directly activate various proinflammatory cytokine genes involved in the initiation and amplification of inflammatory responses in the CNS known to be critical for the development of immune-mediated demyelination.  相似文献   

11.
12.
13.
14.
Mannose-capped lipoarabinomannans (Man-LAMs) are members of the repertoire of Mycobacterium tuberculosis modulins that the bacillus uses to subvert the host innate immune response. Interleukin-12 (IL-12) production is critical for mounting an effective immune response by the host against M. tuberculosis. We demonstrate that Man-LAM inhibits IL-12 p40 production mediated by subsequent challenge with lipopolysaccharide (LPS). Man-LAM inhibits LPS-induced IL-12 p40 expression in an IL-10-independent manner. It attenuates LPS-induced NF-kappaB-driven luciferase gene expression, suggesting that its effects are likely directly related to inhibition of NF-kappaB. This is probably because of dampening of the Toll-like receptor signaling. Man-LAM inhibits IL-1 receptor-associated kinase (IRAK)-TRAF6 interaction as well as IkappaB-alpha phosphorylation. It directly attenuates nuclear translocation and DNA binding of c-Rel and p50. Man-LAM exerts these effects by inducing the expression of Irak-M, a negative regulator of TLR signaling. Knockdown of Irak-M expression by RNA interference reinstates LPS-induced IL-12 production in Man-LAM-pretreated cells. The fact that Irak-M expression could be elicited by yeast mannan suggested that ligation of the mannose receptor by the mannooligosaccharide caps of LAM was the probable trigger for IRAK-M induction.  相似文献   

15.
16.
The effects of epigallocatechin-3-gallate (EGCG) on dendritic cells (DC) maturation were investigated. EGCG, in a dose-dependent manner, profoundly inhibited CD80, CD86, and MHC class I and II expression on bone marrow-derived murine myeloid DC. EGCG restored the decreased dextran-FITC uptake and inhibited enhanced IL-12 production by LPS-treated DC. EGCG-treated DC were poor stimulators of nai;ve allogeneic T-cell proliferation and reduced levels of IL-2 production in responding T cells. EGCG-pretreated DC inhibited LPS-induced MAPKs, such as ERK1/2, p38, JNK, and NF-kappaB p65 translocation. Therefore, the molecular mechanisms by which EGCG antagonized LPS-induced DC maturation appeared to involve the inhibition of MAPK and NF-kappaB activation. These novel findings provide new insight into the immunopharmacological role of EGCG and suggest a novel approach to the manipulation of DC for therapeutic application of autoimmune and allergic diseases.  相似文献   

17.
18.
The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), two immunomodulatory neuropeptides that affect both innate and acquired immunity, down-regulate IL-12 p40 and inducible NO synthase expression in LPS/IFN-gamma-stimulated macrophages. We showed previously that VIP/PACAP inhibit NF-kappaB nuclear translocation through the stabilization of IkappaB and reduce IFN regulatory factor-1 (IRF-1) binding to the regulatory elements found in the IL-12 p40 and inducible NO synthase promoters. In this paper we studied the molecular mechanisms involved in the VIP/PACAP regulation of IRF-1 transactivating activity. Our studies indicate that the inhibition in IRF-1 binding correlates with a reduction in IRF-1 protein and mRNA in IFN-gamma-treated Raw 264.7 macrophages. In agreement with the described Janus kinase (Jak)1/Jak2/STAT1/IRF-1 activation pathway, VIP/PACAP inhibit Jak1/Jak2, STAT1 phosphorylation, and the binding of STAT1 to the GAS sequence motif in the IRF-1 promoter. The effects of VIP/PACAP are mediated through the specific VIP/PACAP receptor-1 and the cAMP/protein kinase A (PKA) transduction pathway, but not through the induction of suppressor of cytokine signaling-1 or suppressor of cytokine signaling-3. Because IFN-gamma is a major stimulator of innate immune responses in vivo, the down-regulation of IFN-gamma-induced gene expression by VIP and PACAP could represent a significant element in the regulation of the inflammatory response by endogenous neuropeptides.  相似文献   

19.
Silibinin is the primary active compound in silymarin. It has been demonstrated to exert anti-carcinogenic effects and hepato-protective effects. However, the effects of silibinin on the maturation and immunostimulatory activities exhibited by dendritic cells (DCs) remain, for the most part, unknown. In this study, we have attempted to determine whether silibinin can influence surface molecule expression, dextran uptake, cytokine production, capacity to induce T-cell differentiation, and the signaling pathways underlying these phenomena in murine bone marrow-derived DCs. Silibinin was shown to significantly suppress the expression of CD80, CD86, MHC class I, and MHC class II in the DCs, and was also associated with impairments of LPS-induced IL-12 expression in the DCs. Silibinin-treated DCs proved highly efficient with regard to Ag capture via mannose receptor-mediated endocytosis. Silibinin also inhibited the LPS-induced activation of MAPKs and the nuclear translocation of the NF-kappaB p65 subunit. Additionally, silibinin-treated DCs evidenced an impaired induction of Th1 response, and a normal cell-mediated immune response. These findings provide new insight into the immunopharmacological functions of silibinin, especially with regard to their impact on the DCs. These findings expand our current understanding of the immunopharmacological functions of silibinin, and may prove useful in the development of therapeutic adjuvants for acute and chronic DC-associated diseases.  相似文献   

20.
IL-12 is a 75 kDa heterodimeric cytokine composed of two disulfide-linked subunits, p35 and p40, which plays an important role in the regulation of the immune response. We tested the hypothesis that thiol antioxidants might interfere with dimerization of the two IL-12 subunits. We thus studied the effect of reduced glutathione (GSH) and N-acetyl-cysteine (NAC) on IL-12 p75 production by human THP-1 cell stimulated with IFN-gamma and Staphylococcus aureus Cowan strain I (SAC), using ELISAs specific for IL-12 p75 or the p40 subunit. NAC and GSH, but not cystine, at concentrations of 5-10 mM inhibited production of IL-12 p75 but not of the p40 subunit. NAC did not inhibit p40 or p35 mRNA expression in dendritic cells or THP-1 cells, or NF-kappa B activation in THP-1 cells. The effect of NAC was specific for IL-12 p75, as NAC did not affect induction of MHC class II expression by IFN-gamma-stimulated THP-1 cells. IL-12 dimer formation appears to be reduced by NAC also in vivo, because pretreatment with NAC (1 g/kg, orally), before LPS injection in mice, inhibited peak IL-12 p75 serum levels without affecting those of p40. We conclude that thiol levels regulate IL-12 p75 production and that assembly of the heterodimer is a step that might represent a target for pharmacological intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号