首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we demonstrate the angiogenic response of valvular endothelial cells to aortic valve (AV) stenosis using a new ex vivo model of aortic leaflets. Histological analysis revealed neovascularization within the cusps of stenotic but not of non-stenotic aortic valves. Correspondingly, the number of capillary-like outgrowth in 3D collagen gel was significantly higher in stenotic than in non-stenotic valves. Capillary-like sprouting was developed significantly faster in stenotic than in non-stenotic valves. New capillary sprouts from stenotic aortic valves exhibited the endothelial cell markers CD31, CD34 and von-Willebrand factor (vWF) as well as carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1), Tie-2 and angiogenesis inhibitor endostatin. Western blot analyses revealed a significant increase of CEACAM1 and endostatin in stenotic aortic valve tissue. Electron microscopic examinations demonstrate that these capillary-like tubes are formed by endothelial cells containing Weibel-Palade bodies. Remarkably, inter-endothelial junctions are established and basement membrane material is partially deposited on the basal side of the endothelial tubes. Our data demonstrate the capillary-like sprout formation from aortic valves and suggest a role of angiogenesis in the pathogenesis of aortic valve stenosis. These data provide new insights into the mechanisms of valvular disorders and open new perspectives for prevention and early treatment of calcified aortic stenosis.  相似文献   

2.
Tissue engineering of heart valves utilizes biodegradable or metabolizable scaffolds for remodeling by seeded autologous cells. The aim of this study was to determine and compare extracellular matrix (ECM) formations, cellular phenotypes and cell location of native and tissue engineered (TE) valve leaflets. Ovine carotid arteries, ovine and porcine hearts were obtained from slaughterhouses. Cells were isolated from carotid arteries and dissected ovine, porcine and TE leaflets. TE constructs were fabricated from decellularized porcine pulmonary valves, seeded ovine arterial cells and subsequent 16 days dynamic in vitro culture using a pulsatile bioreactor. Native and TE valves were studied by histology (hematoxylin-eosin, resorcin-fuchsin, Movat pentachrome), NIR femtosecond multiphoton laser scanning microscopy and scanning electron microscopy (SEM). Cells of native and TE tissues were identified and localized by immunohistochemistry. Arterial, valvular and re-isolated TE-construct cells were processed for immunocytochemistry and Western blotting. ECM analysis and SEM revealed characteristical and comparable structures in native and TE leaflets. Most cells in native leaflets stained strongly positive for vimentin. Cells positive to alpha-smooth muscle actin (alpha-SMA), myosin and calponin were only found at the ventricular (inflow) side of ovine aortic and porcine pulmonary valve leaflets. Cells from TE constructs had a strong expression of vimentin, alpha-SMA, myosin, calponin and h-caldesmon throughout the entire leaflet. Comparable ECM formation and endothelial cell lining of native and TE leaflets could be demonstrated. However, immunostaining revealed significant differences between valvular cell phenotypes of native and TE leaflets. These results may be essential for further cardiovascular tissue engineering efforts.  相似文献   

3.
VEGF-A is a major angiogenesis and permeability factor. Its cellular effects, which can be used as targets in anti-angiogenesis therapy, have mainly been studied in vitro using endothelial cell cultures. The purpose of the present study was to further characterize these effects in vivo in vascular endothelial cells and pericytes, in an experimental monkey model of VEGF-A-induced iris neovascularization. Two cynomolgus monkeys (Macaca fascicularis) received four injections of 0.5 microg VEGF-A in the vitreous of one eye and PBS in the other eye. After sacrifice at day 9, eyes were enucleated and iris samples were snap-frozen for immunohistochemistry (IHC) and stained with a panel of antibodies recognizing endothelial and pericyte determinants related to angiogenesis and permeability. After VEGF-A treatment, the pre-existing iris vasculature showed increased permeability, hypertrophy, and activation, as demonstrated by increased staining of CD31, PAL-E, tPA, uPA, uPAR, Glut-1, and alphavbeta3 and alphavbeta5 integrins, VEGF receptors VEGFR-1, -2 and -3, and Tie-2 in endothelial cells, and of NG2 proteoglycan, uPA, uPAR, integrins and VEGFR-1 in pericytes. Vascular sprouts at the anterior surface of the iris were positive for the same antigens except for tPA, Glut-1, and Tie-2, which were notably absent. Moreover, in these sprouts VEGFR-2 and VEGFR-3 expression was very high in endothelial cells, whereas many pericytes were present that were positive for PDGFR-beta, VEGFR-1, and NG2 proteoglycan and negative for alpha-SMA. In conclusion, proteins that play a role in angiogenesis are upregulated in both pre-existing and newly formed iris vasculature after treatment with VEGF-A. VEGF-A induces hypertrophy and loss of barrier function in pre-existing vessels, and induces angiogenic sprouting, characterized by marked expression of VEGFR-3 and lack of expression of tPA and Tie-2 in endothelial cells, and lack of alpha-SMA in pericytes. Our in vivo study indicates a role for alpha-SMA-negative pericytes in early stages of angiogenesis. Therefore, our findings shed new light on the temporal and spatial role of several proteins in the angiogenic cascade in vivo.  相似文献   

4.
The avascularity of cardiac valves is abrogated in several valvular heart diseases (VHDs). This study investigated the molecular mechanisms underlying valvular avascularity and its correlation with VHD. Chondromodulin-I, an antiangiogenic factor isolated from cartilage, is abundantly expressed in cardiac valves. Gene targeting of chondromodulin-I resulted in enhanced Vegf-A expression, angiogenesis, lipid deposition and calcification in the cardiac valves of aged mice. Echocardiography showed aortic valve thickening, calcification and turbulent flow, indicative of early changes in aortic stenosis. Conditioned medium obtained from cultured valvular interstitial cells strongly inhibited tube formation and mobilization of endothelial cells and induced their apoptosis; these effects were partially inhibited by chondromodulin-I small interfering RNA. In human VHD, including cases associated with infective endocarditis, rheumatic heart disease and atherosclerosis, VEGF-A expression, neovascularization and calcification were observed in areas of chondromodulin-I downregulation. These findings provide evidence that chondromodulin-I has a pivotal role in maintaining valvular normal function by preventing angiogenesis that may lead to VHD.  相似文献   

5.
6.
The involvement of endothelial progenitor cells in tumor angiogenesis   总被引:11,自引:0,他引:11  
Endothelial progenitor cells (EPCs) have been isolated from peripheral blood CD34, VEGFR-2, or AC 133 (CD133) antigen-positive cells, which may home to site of neovascularization and differentiate into endothelial cells in situ. Endothelial cells contribute to tumor angiogenesis, and can originate from sprouting or co-option of neighbouring pre-existing vessels. Emerging evidence indicate that bone marrow-derived circulating EPCs can contribute to tumor angiogenesis and growth of certain tumors. This review article will summarize the literature data concerning this new role played by EPCs in tumor angiogenesis.  相似文献   

7.
VEGFR-3 is essential for vascular development and maintenance of lymphatic vessel's integrity. Little is known about its cooperative effect with other receptors of the same family. Contrary to VEGFR-2, stimulation of VEGFR-3 by VEGF-C and -D failed to enhance its phosphorylation either in HEK293T or in PAE cells. These ligands were unable to induce angiogenesis of PAEC expressing VEGFR-3 alone. In the presence of VEGFR-2, VEGF-C and -D induced heterodimerization of VEGFR-3 with VEGFR-2. This heterodimerization was associated with enhanced VEGFR-3 phosphorylation and subsequent cellular responses as evidenced by the formation of capillary-like structures in PAE cells and proliferation of primary human endothelial cells expressing both receptors. Taken together, these results show for the first time that VEGFR-3 needs to be associated to VEGFR-2 to induce ligand-dependent cellular responses.  相似文献   

8.
Angiogenesis, a hallmark step in tumor metastasis and ocular neovascularization, is driven primarily by the function of VEGF ligand on one of its receptors, VEGF receptor 2 (VEGFR-2). Central to the proliferation and ensuing angiogenesis of endothelial cells, the abundance of VEGFR-2 on the surface of endothelial cells is essential for VEGF to recognize and activate VEGFR-2. We have identified phosducin-like 3 (PDCL3, also known as PhLP2A), through a yeast two-hybrid system, as a novel protein involved in the stabilization of VEGFR-2 by serving as a chaperone. PDCL3 binds to the juxtamembrane domain of VEGFR-2 and controls the abundance of VEGFR-2 by inhibiting its ubiquitination and degradation. PDCL3 increases VEGF-induced tyrosine phosphorylation and is required for VEGFR-2-dependent endothelial capillary tube formation and proliferation. Taken together, our data provide strong evidence for the role of PDCL3 in angiogenesis and establishes the molecular mechanism by which it regulates VEGFR-2 expression and function.  相似文献   

9.
The existence of endothelial progenitor cells (EPC) with high cell-cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC-derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM-1), CD105 (endoglin), CD144 (VE-cadherin), Tie-1, Tie-2, VEGFR-1/Flt-1 and VEGFR-2/Flk-1. Few EPC-derived cells became positive for LYVE-1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell-specific markers such as podoplanin and Prox-1. Functional tests demonstrated that the cobblestone EPC-derived cells up-regulated CD54 and CD62E expression in response to TNF-α, incorporated DiI-acetylated low-density liproprotein and formed cord- and tubular-like structures with capillary lumen in three-dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel-Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC-derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system.  相似文献   

10.
《MABS-AUSTIN》2013,5(5):957-968
Angiogenesis is one of the most important processes for cancer cell survival, tumor growth and metastasis. Vascular endothelial growth factor (VEGF) and its receptor, particularly VEGF receptor-2 (VEGFR-2, or kinase insert domain-containing receptor, KDR), play critical roles in tumor-associated angiogenesis. We developed TTAC-0001, a human monoclonal antibody against VEGFR-2/KDR from a fully human naïve single-chain variable fragment phage library. TTAC-0001 was selected as a lead candidate based on its affinity, ligand binding inhibition and inhibition of VEGFR-2 signal in human umbilical vein endothelial cells (HUVEC). TTAC-0001 inhibited binding of VEGF-C and VEGF-D to VEGFR-2 in addition to VEGF-A. It binds on the N-terminal regions of domain 2 and domain 3 of VEGFR-2. It could inhibit the phosphorylation of VEGFR-2/KDR and ERK induced by VEGF in HUVEC. TTAC-0001 also inhibited VEGF-mediated endothelial cell proliferation, migration and tube formation in vitro, as well as ex vivo vessel sprouting from rat aortic rings and neovascularization in mouse matrigel model in vivo. Our data indicates that TTAC-0001 blocks the binding of VEGFs to VEGFR-2/KDR and inhibits VEGFR-induced signaling pathways and angiogenesis. Therefore, these data strongly support the further development of TTAC-0001 as an anti-cancer agent in the clinic.  相似文献   

11.
C-reactive protein (CRP) is associated with cardiovascular disease. However, its biological functions for the vascular system are largely unknown. The objective of this study was to determine whether CRP could affect endothelial cell proliferation and expression of VEGF receptors (VEGFRs) and/or neuropilins. Human coronary artery endothelial cells (HCAECs) treated with CRP showed a significant reduction of mRNA levels of VEGFR-2, VEGFR-3, NRP-1, and NRP-2 by 34%, 63%, 41%, and 43%, respectively, as compared to untreated control cells (p < 0.05) by real-time PCR analysis. In addition, VEGF165-induced cell proliferation was determined by [3H]thymidine incorporation and MTS assay as well as capillary-like tube formation on Matrigel. HCAECs pretreated with CRP significantly decreased VEGF165-induced [3H]thymidine incorporation by 73%, MTS absorbance by 44%, and capillary-like tube formation by 54% as compared to CRP-untreated cells (p < 0.05). These data demonstrate that CRP significantly attenuates VEGF165-induced HCAEC proliferation and capillary-like tube formation through downregulation of expression of VEGFRs and NRPs. This study suggests a new molecular mechanism underlying the adverse effect of CRP on the vascular system.  相似文献   

12.
Calcific aortic stenosis (CAS) is a pathological condition of the aortic valve characterized by dystrophic calcification of the valve leaflets. Despite the high prevalence and mortality associated with CAS, little is known about its pathogenetic mechanisms. Characterized by progressive dystrophic calcification of the valve leaflets, the early stages of aortic valve degeneration are similar to the active inflammatory process of atherosclerosis including endothelial disruption, inflammatory cell infiltration, lipid deposition, neo-vascularization and calcification. In the vascular system, the endothelium is an important regulator of physiological and pathological conditions; however, the contribution of endothelial dysfunction to valvular degeneration at the cellular and molecular level has received little attention. Endothelial cell (EC) activation and neo-vascularization of the cusps characterizes all stages of aortic valvular degeneration from aortic sclerosis to aortic stenosis. Here we reported the role of osteopontin (OPN) in the regulation of EC activation in vitro and in excised tissue from CAS patients and controls. OPN is an important pro-angiogenic factor in several pathologies. High levels of OPN have been demonstrated in both tissue and plasma of patients with aortic valve sclerosis and stenosis. The characterization of valvular ECs as a cellular target for OPN will help us uncover the pathogenesis of aortic valve degeneration and stenosis, opening new perspectives for the prevention and therapy of this prevalent disease.  相似文献   

13.
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin’s actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin’s actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin’s effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.  相似文献   

14.
Stromal keratitis (SK) is an immunoinflammatory eye lesion caused by HSV-1 infection. One essential step in the pathogenesis is neovascularization of the normally avascular cornea, a process that involves the vascular endothelial growth factor (VEGF) family of proteins. In this report, we targeted the proliferating vascular endothelial cells expressing VEGFR-2 in the SK cornea by immunization with recombinant Salmonella typhimurium containing a plasmid encoding murine VEGFR-2. This form of DNA immunization resulted in diminished angiogenesis and delayed development of SK caused by HSV-1 infection and also reduced angiogenesis resulting from corneal implantation with rVEGF. CTL responses against endothelial cells expressing VEGFR-2 were evident in the VEGFR-2-immunized group and in vivo CD8+ T cell depletion resulted in the marked reduction of the antiangiogenic immune response. These results indicate a role for CD8+ T cells in the antiangiogenic effects. Our results may also imply that the anti-VEGFR-2 vaccination approach might prove useful to control pathological ocular angiogenesis and its consequences.  相似文献   

15.
Adipose tissue is highly vascularized and requires the angiogenic properties for its mass growth. Visfatin has been recently characterized as a novel adipokine, which is preferentially produced by adipose tissue. In this study, we report that visfatin potently stimulates in vivo neovascularization in chick chorioallantoic membrane and mouse Matrigel plug. We also demonstrate that visfatin activates migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, visfatin evokes activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) in endothelial cells, which is closely linked to angiogenesis. Inhibition of ERK activation markedly decreases visfatin-induced tube formation of HUVECs and visfatin-stimulated endothelial cell sprouting from rat aortic rings. Taken together, these results demonstrate that visfatin promotes angiogenesis via activation of mitogen-activated protein kinase ERK-dependent pathway and suggest that visfatin may play important roles in various pathophysiological angiogenesis including adipose tissue angiogenesis.  相似文献   

16.
Angiogenesis is considered as an essential process for tumour development and invasion. Previously, we demonstrated that cyclin-dependent kinase inhibition by roscovitine induces a radiosensitization and a synergistic antitumoral effect in human carcinoma but its effect on the microenvironment and tumour angiogenesis remains unknown. Here, we investigated the effect of the combination roscovitine and ionizing radiation (IR) on normal cells in vitro and on tumour angiogenesis in MDA-MB 231 tumour xenografts. We observed that the combination roscovitine and IR induced a marked reduction of angiogenic hot spot and microvascular density in comparison with IR or roscovitine treatments alone. The Ang-2/Tie-2 ratio was increased in presence of reduced vascular endothelial growth factor level suggesting vessel destabilization. In vitro , no radiosensitization effect of roscovitine was found in endothelial, fibroblast, and keratinocyte cells. IR potentiated the antiproliferative effect of roscovitine without inducing apoptosis in endothelial cells. Roscovitine decreased IR-stimulated vascular endothelial growth factor secretion of MDA-MB 231 and endothelial cells. A reduction in the endothelial cells invasion and the capillary-like tube formation in Matrigel were observed following the combination roscovitine and IR. This combined treatment targets angiogenesis resulting in microvessel destabilization without inducing normal cell toxicity.  相似文献   

17.
Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR-family proteins consist of VEGFR-1/Flt-1, VEGFR-2/KDR/Flk-1, and VEGFR-3/Flt-4. Among these, VEGFR-2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1-3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR-specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR-2 tyrosine kinase, ZM323881 (5-[[7-(benzyloxy) quinazolin-4-yl]amino]-4-fluoro-2-methylphenol), to explore the role of VEGFR-2 in endothelial cell function. Consistent with its reported effects on VEGFR-2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR-2, but not of VEGFR-1, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR-1 and VEGFR-2, but not VEGFR-3, in the absence or presence of ZM323881. Inhibition of VEGFR-2 blocked activation of extracellular regulated-kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR-1-specific ligand, placental growth factor (PIGF). Inhibition of VEGFR-2 also perturbed VEGF-induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor-2 inhibition also reversed VEGF-stimulated phosphorylation of CrkII and its Src homology 2 (SH2)-binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR-2 thus blocked all VEGF-induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR-2 is critical for VEGF signaling and/or that VEGFR-2 may function in a heterodimer with VEGFR-1 in human vascular endothelial cells.  相似文献   

18.
During embryonic development, the growth of blood vessels requires the coordinated activation of endothelial receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptor-2 (VEGFR-2) and Tie-2. Similarly, in adulthood, activation of endothelial RTKs has been shown to enhance development of the collateral circulation and improve blood flow to ischemic tissues. Recent evidence suggests that RTK activation is negatively regulated by protein tyrosine phosphatases (PTPs). In this study, we used the nonselective PTP inhibitor bis(maltolato)oxovanadium IV (BMOV) to test the potential efficacy of PTP inhibition as a means to enhance endothelial RTK activation and improve collateral blood flow. In cultured endothelial cells, pretreatment with BMOV augmented VEGFR-2 and Tie-2 tyrosine phosphorylation and enhanced VEGF- and angiopoietin-1-mediated cell survival. In rat aortic ring explants, BMOV enhanced vessel sprouting, a process that can be influenced by both VEGFR-2 and Tie-2 activation. Moreover, 2 wk of BMOV treatment in a rat model of peripheral vascular disease enhanced collateral blood flow similarly to VEGF, and after 4 wk, BMOV was superior to VEGF. Taken together, these studies provide evidence that PTPs are important regulators of endothelial RTK activation and for the first time demonstrate the potential utility of phosphatase inhibition as a means to promote collateral development and enhance collateral blood flow to ischemic tissue.  相似文献   

19.
Chung TW  Kim SJ  Choi HJ  Kim KJ  Kim MJ  Kim SH  Lee HJ  Ko JH  Lee YC  Suzuki A  Kim CH 《Glycobiology》2009,19(3):229-239
Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we show that GM3 regulated the activity of various downstream signaling pathways and biological events through the inhibition of VEGF-stimulated VEGFR-2 activation in vascular endothelial cells in vitro. Furthermore, GM3 strongly blocked VEGF-induced neovascularization in vivo, in models including the chick chorioallantoic membrane and Matrigel plug assay. Interestingly, GM3 suppressed VEGF-induced VEGFR-2 activation by blocking its dimerization and also blocked the binding of VEGF to VEGFR-2 through a GM3-specific interaction with the extracellular domain of VEGFR-2, but not with VEGF. Primary tumor growth in mice was inhibited by subcutaneous injection of GM3. Immunohistochemical analyses showed GM3 inhibition of angiogenesis and tumor cell proliferation. GM3 also resulted in the suppression of VEGF-stimulated microvessel permeability in mouse skin capillaries. These results suggest that GM3 inhibits VEGFR-2-mediated changes in vascular endothelial cell function and angiogenesis, and might be of value in anti-angiogenic therapy.  相似文献   

20.
The proangiogenic members of VEGF family and related receptors play a central role in the modulation of pathological angiogenesis. Recent insights indicate that, due to the strict biochemical and functional relationship between VEGFs and related receptors, the development of a new generation of agents able to target contemporarily more than one member of VEGFs might amplify the antiangiogenic response representing an advantage in term of therapeutic outcome. To identify molecules that are able to prevent the interaction of VEGFs with related receptors, we have screened small molecule collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation of VEGF receptor 1 and 2 (VEGFR-1,VEGFR-2) and to inhibit endothelial cell migration and capillary-like tube formation induced by VEGF-A or placental growth factor 1 (PlGF-1) at low μm concentration. In vivo, amentoflavone is able to inhibit VEGF-A-induced chorioallantoic membrane neovascularization as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop powerful new antiangiogenic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号