首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.  相似文献   

2.
Effects of chronic administration of somatostatin on rat exocrine pancreas   总被引:1,自引:0,他引:1  
We studied the effects of somatostatin on synthesis of pancreatic DNA, RNA and protein and on pancreatic weight and contents of DNA, protein, amylase and chymotrypsinogen in rats. In short term synthesis studies, rats were injected with 100 micrograms . kg-1 somatostatin or 0.15 M NaCl (control) at times 0, 8 and 16 h. Eight rats from each treatment group were killed 2, 4, 8, 12, 16, 20 and 24 h after beginning treatment. Incorporation rates in vivo of [3H]thymidine into DNA, [3H]uridine into RNA and [14C]phenylalanine into total protein were significantly depressed by somatostatin. In long term studies, four groups of 12 rats were injected every 8 h for 5 days with 0.15 M NaCl or 11, 33 or 100 micrograms . kg-1 somatostatin. Body weight was unaffected but pancreatic contents of DNA, protein and enzymes were significantly decreased by somatostatin. Administration of somatostatin inhibits DNA, RNA and protein synthesis in exocrine pancreas with resulting decreases in DNA and enzyme contents.  相似文献   

3.
The increases in DNA synthesis and total DNA content after caerulein treatment support the trophic effect of this CCK analog on the pancreas. Over a 15 day caerulein treatment, pancreatic growth plateaued after 5 days and somatostatin is believed to be responsible for this phenomenon. The present study was undertaken to test this possibility. Rats were treated for 2 or 4 days with caerulein (1 μg · kg?1), somatostatin antiserum plus caerulein or caerulein plus somatostatin (600 μg · kg?1). Caerulein increased all parameters studied after 2 and 4 days; pancreatic hyperplasia was established after 2 days. The somatostatin antiserum significantly enhanced the effect of caerulein, especially on DNA synthesis and contents after 2 and 4 days. The trophic effect of caerulein was significantly reduced by somatostatin dramatically so with respect to hyperplasia. The effects of the somatostatin antiserum and those of somatostatin on stimulated pancreatic growth support the hypothesis that somatostatin may be considered an endogenous growth inhibitory factor for the pancreas.  相似文献   

4.
Summary Lung organ bits taken from full-term mice were explanted on the dermal surface of sterile, dead pigskin. The cells migrated onto the pigskin dermis and proliferated to form an organoid culture consisting of ductular structures separated by a matrix of epithelial cells. Cells within the ductular structures were ciliated, produced mucin, and exhibited the activities of nonspecific esterase and gamma-glutamyl transferase; therefore they were considered to be derived from bronchial epithelium. Cells forming the matrix possessed the activities of nonspecific esterase and alkaline phosphatase and contained lamellar structures typical of surfactant-producing pneumocyte Type II cells; therefore they were considered to be derived from alveolar precursor cells. This research was supported by Grant-in-Aid 1203 M from the Council for Tobacco Research, awarded to Aaron E. Freeman.  相似文献   

5.
6.
7.
Summary Close contacts between exocrine and endocrine cells were observed in human and rat pancreas. The presence of junctional specializations, including desmosomes, tight and gap junctions, as well as interdigitations between endocrine and exocrine cells, implies that these cells are structurally and functionally associated.  相似文献   

8.
9.
10.
We analyzed the development of the pancreatic ducts in grass snake Natrix natrix L. embryos with special focus on the three‐dimensional (3D)‐structure of the duct network, ultrastructural differentiation of ducts with attention to cell types and lumen formation. Our results indicated that the system of ducts in the embryonic pancreas of the grass snake can be divided into extralobular, intralobular, and intercalated ducts, similarly as in other vertebrate species. However, the pattern of branching was different from that in other vertebrates, which was related to the specific topography of the snake's internal organs. The process of duct remodeling in Natrix embryos began when the duct walls started to change from multilayered to single‐layered and ended together with tube formation. It began in the dorsal pancreatic bud and proceeded toward the caudal direction. The lumen of pancreatic ducts differentiated by cavitation because a population of centrally located cells was cleared through cell death resembling anoikis. During embryonic development in the pancreatic duct walls of the grass snake four types of cells were present, that is, principal, endocrine, goblet, and basal cells, which is different from other vertebrate species. The principal cells were electron‐dense, contained indented nuclei with abundant heterochromatin, microvilli and cilia, and were connected by interdigitations of lateral membranes and junctional complexes. The endocrine cells were electron‐translucent and some of them included endocrine granules. The goblet cells were filled with large granules with nonhomogeneous, moderately electron‐dense material. The basal cells were small, electron‐dense, and did not reach the duct lumen.  相似文献   

11.
12.
13.
Fab fragments from two new monospecific anti-human tissue kallikrein sera were examined for their capacity to inhibit the functional activities of purified human urinary kallikrein and purified human pancreatic kallikrein. Fragments from a new anti-urinary kallikrein serum and from an anti-pancreatic kallikrein serum yielded mixed inhibition of kinin-generating activity and minimal inhibition of esterolytic activity. In contrast to the previously described "active site directed" anti-urinary kallikrein, these new antisera demonstrated little specificity for epitopes near the enzymatic site of urinary or pancreatic kallikrein. When used to localize kallikrein antigen in human pancreas obtained at surgery, IgG fractions of the new anti-kallikrein sera yielded moderate acinar and ductal staining in the absence of pretreatment of the tissue with trypsin or pronase. Short incubation with 0.125 mg/ml of either enzyme permitted the discrete localization of islet beta cell kallikrein antigen, while increased pronase concentrations decreased kallikrein antigen in both islets and exocrine tissue and led to islet destruction. Both antibody specificity and tissue preparation influence kallikrein localization in human pancreas.  相似文献   

14.
15.
Summary The fetal rat pancreas, explanted at 18 days of gestation and cultured up to ten days, contains numerous acetylcholinesterase-positive neurons. These nerves usually appear in small ganglia although single nerve cells are encountered. The axons of these intrapancreatic nerves appear to terminate only in the islet tissue and not on any exocrine components of the expiant. It is concluded that the fetal rat pancreas contains an islet-specific group of cholinergic neurons.We gratefully acknowledge the skilled technical assistance of Dan Whitehead and the secretarial assistance of Mary Pat Brady  相似文献   

16.
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.  相似文献   

17.
Activin A is expressed in endocrine precursor cells of the fetal pancreatic anlage. To determine the physiological significance of activins in the pancreas, a transgenic mouse line expressing the truncated type II activin receptor under the control of beta-actin promoter was developed. Histological analyses of the pancreas revealed that the pancreatic islets of the transgenic mouse were small in size and were located mainly along the pancreatic ducts. Immunoreactive insulin was detected in islets, some acinar cells, and in some epithelial cells in the duct. In addition, there were abnormal endocrine cells outside the islets. The shape and the size of the endocrine cells varied and some of them were larger than islets. These cells expressed immunoreactive insulin and glucagon. In the exocrine portion, there were morphologically abnormal exocrine cells, which did not form a typical acinar structure. The cells lacked spatial polarity characteristics of acinar cells but expressed immunoreactive amylase, which was distributed diffusely in the cytoplasm. Plasma glucose concentration was normal in the transgenic mouse before and after the administration of glucose. The insulin content of the pancreas in transgenic and normal mice was nearly identical. These results suggest that activins or related ligands regulate the differentiation of the pancreatic endocrine and exocrine cells.  相似文献   

18.
The distribution of nitric oxide synthase in both neuronal and non-neuronal pancreatic tissues and the role of nitric oxide in the control of exocrine pancreatic secretion are reviewed in this article. Earlier reports based on in vivo studies suggested that nitric oxide can affect the secretory activity of the exocrine pancreas through changes in pancreatic blood flow. More recently, the employment of either nitric oxide synthase inhibitors or nitric oxide donors in in vitro preparations has provided evidence that nitric oxide can exert a direct action on this gland independently on its vascular effects. Most research in this area seems to indicate that modulation of exocrine pancreatic function by nitric oxide is exerted via activation of guanylate cyclase and generation of cGMP, although other pathways cannot be excluded. Experiments performed over the last year in our laboratory reveal a novel and interesting mechanism based on the ability of nitric oxide to control the release of endogenous neurotransmitter in the pancreas and, subsequently, the nerve-mediated enzyme secretion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号