首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
从少量培养细胞中同时提取微量蛋白和RNA的方法探讨   总被引:2,自引:0,他引:2  
为建立一项从少量培养细胞中同时提取RNA和蛋白质的技术 ,向 2~ 3× 10 5细胞中加入 1ml自制RNA提取试剂 ,RNA抽提后剩下的中下两相 ,用异丙醇、盐酸胍和无水乙醇抽提蛋白质 .同时用进口Tripure试剂、经典的异硫氰酸胍 苯酚 氯仿一步抽提RNA法和分子克隆实验手册裂解液制备蛋白质的方法 ,作为对照 .自制试剂提取的总RNA ,18S、2 8S清晰可见 ,2 8S比 18S带亮度强 2~ 3倍 ,带与带之间无拖尾现象 ,5S隐约可见 ,而且成功地进行了Northern印迹、RT PCR分析 ,与经典方法差异不大 ;用此法所提蛋白质 ,经SDS PAGE检测 ,蛋白分离效果很好 ,无杂质 ,且Western印迹检测Giα蛋白 ,可见一条清晰的特异带 ,与常规提取蛋白质 ,结果相似 .从微量细胞中同时提取的RNA和蛋白质 ,得率高、纯度好 ,具有化学完整性和生物学性质  相似文献   

2.
3.
The effects of culture conditions on abscisic acid (ABA)-inducedfreezing tolerance were determined in smooth bromegrass Bromusinermis Leyss cv. Manchar) cell suspension cultures. Bromegrasscultures initiated with 2 g fr wt of cells achieved maximumfreezing tolerances (greater than –32?C) at 25 to 30?Cin the presence of 75 to 100 µM ABA. High levels of freezingtolerance induced by ABA were correlated with high growth ratesat 25 and 30?C. In control cells, incubation at 10?C inducedoptimum levels of hardiness with minimal growth. Prolonged exposure(6 weeks) of cells to 3?C, with or without ABA, increased freezingtolerance only by several degrees. Exogenous ABA concentrationsgreater than 100 µM were not inhibitory to growth. Repeatedexposure to ABA, however, retarded growth and made the cellstolerant to temperatures below –40?C. Removal of ABA fromthe medium resulted in dehardening of the cells both at 25 and3?C. Nitrogen had a marginal effect on ABA-induced hardeningat 25?C, but inhibited age-dependent hardening of control cellcultures. Light had no effect on the freezing tolerance of culturedcells. Addition of 10% sucrose, 30 min prior to freezing, tobromegrass cells treated with ABA for 4 days increased freezingtolerance more than 15?C. These observations are discussed inrelation to the contrasting behaviour of the low temperatureand photoperiod dependent cold acclimation of plants (Received July 14, 1989; Accepted October 23, 1989)  相似文献   

4.
Liver glycogen is depleted in guinea pigs infected with Coxiella burneti. Syntheses of the glycogen precursors uridine triphosphate and uridine diphosphate glucose are unaffected during Q fever, but glycogen synthetase activity is inhibited. Exogenous cortisol relieves this inhibition in infected animals. Orotate and amino acids are more rapidly incorporated into ribonucleic acid and protein during infection. It is proposed that the biochemical defect in the synthesis of glycogen lies in the inactivation of glycogen synthetase.  相似文献   

5.
During the transition of tobacco (Nicotiana tabacum) pith tissue to callus tissue, there were changes in the composition of the soluble amino acid pools, in the distribution of amino acids between pool and protein, and in the synthesis, accumulation, and degradation of proteins. The size of the leucine pool decreased from 90 nanomoles per gram fresh weight in fresh pith to 20 nanomoles in 24-hour cultured pith, followed by a return to 90 nmoles in pith cultured longer than 5 days. The latter value is the same as that reported for exponentially growing callus cells. Many other pool amino acids changed as dramatically. However, they always approached callus levels after 5 days of culturing. The total amino acid content of pith tissue (the sum of both pool and protein) remained unchanged during culturing. The value for total amino acid content (34 to 42 nanomoles per gram fresh weight) was also similar to that found in callus. The distribution of amino acids between pool and protein did change during culturing. The transition of pith tissue with 88% of its total amino acids free in the soluble pool to callus with 92% of its amino acids in protein was further characterized by changes in protein metabolism. Both protein synthesis and accumulation increased over the first 50 hours in culture to a maximum rate of 45 milligrams protein synthesized gram protein−1 hour−1. After 50 hours in culture, the rate of protein accumulation decreased to equal the rate of fresh weight accumulation (10 mg g−1 hour−1). However, protein synthesis continued at a high rate for several days, suggesting protein degradation was turned on by this time. By 5 days protein synthesis had decreased to a rate similar to that of callus.  相似文献   

6.
Microtubule-associated protein 1B (MAP1B) is expressed mainly in the brain during early development and plays important roles in the regulation of microtubule dynamics which is essential to neurite outgrowth and elongation. Recent studies report, however, that MAP1B persists in some areas of mature brain where it may serve functions other than microtubule-binding, in some cases possibly as a transmembrane protein. To understand the entire aspect of MAP1B function, we investigated the expression and subcellular localization of MAP1B during the course of synaptogenesis in cultured rat cortical neurons. Major part of synaptogenesis in this system took place between 3 and 17 days in vitro as monitored by Synapsin I expression. After surface-biotinylation of intact cells, subcellular fractionation was carried out using streptoavidin-conjugated magnetic beads to yield three fractions: plasma membrane fraction with attached membrane skeleton, cytoskeletal fraction, and soluble fraction. The amount of total MAP1B as well as the proportion of cytoskeletal MAP1B was kept constant between 7 and 21 days. MAP1B in the plasma membrane fraction increased progressively at the expense of soluble MAP1B, reaching 50% of total at 21 days in vitro. A small but reproducible proportion (0.35%) of MAP1B was also detected as a biotinylated transmembrane protein which increased with synaptogenesis. There was a concomitant increase in plasma membrane-associated actin, indicating the development of actin-based membrane skeleton. It is thus concluded that MAP1B has another important role in the maturation of neurites through establishment of the membrane skeleton.  相似文献   

7.
The nucleic acid, protein and uncombined amino acid contentof seeds of soya-bean (Glycine max L. Merr.), garden pea (Pisumsativum L.), kidney bean (Phaseolus vulgaris L.) and peanut(Arachis hypogaea L.) were measured at various times duringseed formation in an effort to understand why the soya-beanhas nearly twice as much protein as the other legume seeds.In all these species the concentration of deoxyribonucleic acid,ribonucleic acid and uncombined amino acids decreased duringseed formation. The protein level of kidney bean was relativelyconstant during development whereas the protein levels of pea,peanut and soya-bean increased during development. The proteincontent of the soya-bean increased throughout development whereasthe protein increase in peanut took place early and that inpea took place later in development. The ratio of protein toribonucleic acid was highest in peanut, less in soya-bean, andlowest in pea and kidney bean. Similarly, the ratio of proteinto deoxyribonucleic acid was higher in kidney bean than in soya-bean.Soya-beans had a lower amino acid content than any of the otherseeds at all stages of development. These results indicate thatneither total deoxyribonucleic acid, ribonucleic acid nor uncombinedamino acid content is responsible for the higher protein contentof soya-beans.  相似文献   

8.
Abstract: Adenylate kinase (AK), which catalyzes the equilibrium reaction among AMP, ADP, and ATP, is considered to participate in the homeostasis of energy metabolism in cells. Among three vertebrate isozymes, AK isozyme 1 (AK1) is present prominently in the cytosol of skeletal muscle and brain. When mouse embryonal carcinoma P19 cells were differentiated by retinoic acid into neural cells, the amount of AK1 protein and enzyme activity increased about fivefold concomitantly with neurofilament (NF). Double-immunofluorescence staining showed that both AK1 and NF were located in neuronal processes as well as the perinuclear regions in neuron-like cells, but not in glia-like cells. The amount of brain-type creatine kinase increased only twofold during P19 differentiation. The AK isozyme 2, which was not detected in adult mouse brain, was found in P19 cells and did not increase during the differentiation. Mitochondrial AK isozyme 3, which uses GTP instead of ATP as a phosphate donor, was increased significantly. Immunohistochemical analysis with the primary cultured cells from rat cerebral cortex showed similar cellular localization of AK1 to those observed with differentiated P19 cells. These results suggest an important role of this enzyme in neuronal functions and in neuronal differentiation.  相似文献   

9.
Imoto SA  Ohta Y 《Plant physiology》1985,79(3):751-755
Intracellular localization of lunularic acid and prelunularic acid in suspension cultured cells of Marchantia polymorpha L. was studied. The sum of both compounds was determined as lunularic acid group (LNAs) because of the instability of prelunularic acid to convert into lunularic acid.

Mechanical disruption of the cells followed by differential centrifugation showed that LNAs was associated with the supernatant of 100,000g centrifugation. Protoplasts isolated from the cells were osmotically ruptured and the distribution of LNAs among the organelles was examined by discontinuous density gradient centrifugation of the protoplast contents. Successful isolation of intact chloroplasts, mitochondria and peroxisomes free from cytoplasm indicated that LNAs was not accumulated in these organelles. Flotation techniques resulted in an efficient isolation of pure vacuoles and revealed that LNAs was distributed almost equally in the vacuoles and cytoplasm.

  相似文献   

10.
In this study, we investigated the expression of various G proteins in whole sciatic nerves, in myelin and nonmyelin fractions from these nerves, and in membranes of immortalized Schwann cells. In myelin, nonmyelin, and Schwann cell membranes we detected two 39-40-kDa pertussis toxin substrates that were resolved on separation on urea-gradient gels. Two cholera toxin substrates with apparent molecular masses of 42 and 47 kDa were present in nerve and brain myelin and in Schwann cell membranes. In these membranes, a third 45-kDa cholera toxin substrate, which displayed the highest labeling, was also present. Immunoblotting with specific antisera allowed the identification of G(o) alpha, Gi1 alpha, Gi2 alpha, Gi3 alpha, Gq/G11 alpha, and the two isoforms of Gs alpha in nerve homogenates, nerve, and brain myelin fractions. In Schwann cell membranes we identified G(o) alpha, Gi2 alpha, Gi3 alpha, and proteins from the Gq family, but no immunoreactivity toward anti-Gi1 alpha antiserum was detected. In these membranes, anti-Gs alpha antibody recognized the three cholera toxin substrates mentioned above, with the 45-kDa band displaying the highest immunoreactivity. Relative to sciatic nerve myelin, the Schwann cell membranes revealed a significantly higher expression of Gi3 alpha and the absence of Gi1 alpha. The different distribution of G proteins among the different nerve compartments might reflect the very specialized function of Schwann cells and myelin within the nerve.  相似文献   

11.
The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies.  相似文献   

12.
冷害过程中黄瓜叶片SOD、CAT和POD活性的变化   总被引:34,自引:10,他引:34  
实验选用3个耐冷力不同的黄瓜品种研究其叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)等3种抗氧化酶活性在冷害过程中的变化。结果表明:低温胁迫期间的CAT和POD活性与黄瓜叶片的耐冷力表现一致,SOD活性则与其耐冷力表现相反。低温胁迫后,3个品种的所有3种抗氧化酶活性均降低,叶片表现出明显的冷害症状,但耐冷力较高的津优10号仍然具有相对较高的CAT活性。恢复期的SOD活性无显著性变化;耐冷力最弱的津研4号和耐冷力中等的津绿3号的CAT活性上升而津优10号的CAT活性降低;3个品种的POD活性都增高,但津研4号的上升幅度明显高于其它2个品种,可能与POD能催化活性氧(ROS)产生有关。  相似文献   

13.
To study in detail the hypersensitive reaction, one of the major defense responses of plants against microbial infection, we used a model system of reduced complexity with cultured parsley (Petroselinum crispum) cells infected with the phytopathogenic fungus Phytophthora infestans. Experimental conditions were established to maintain maximal viability of the cultured cells during co-cultivation with fungal germlings, and a large proportion of the infected parsley cells responded to fungal infection with rapid cell death, thereby exhibiting major features of the hypersensitive reaction in whole-plant-pathogen interactions. Rapid cell death clearly correlated with termination of further growth and development of the fungal pathogen. Thus, the system fulfilled important prerequisites for investigating cell-death-related metabolic changes in individual infected cells. Using cytochemical methods, we monitored the increase of mitochondrial activity in single infected cells and the intracellular accumulation of reactive oxygen species prior to the occurrence of rapid cell death. We obtained strong correlative evidence for the involvement of these intracellularly accumulating reactive oxygen species in membrane damage and in the resulting abrupt collapse of the cell.  相似文献   

14.
15.
Abstract: In hypothalamic cells cultured in serum-free medium, the quantity of tyrosine hydroxylase mRNA increases after treatment with an activator of the protein kinase A pathway (8-bromoadenosine cyclic AMP, 3-isobutyl-1-methylxanthine, or forskolin) or an activator of protein kinase C (12- O -tetradecanoylphorbol 13-acetate or sn -1,2-diacylglycerol). The tyrosine hydroxylase mRNA level decreases in the cells after inhibition of protein kinase C with calphostin C or after depletion of protein kinase C by extended phorbol ester treatment. These data suggest that both protein kinase pathways regulate tyrosine hydroxylase gene expression in hypothalamic cells. As simultaneous activation of both pathways has less than an additive effect on the tyrosine hydroxylase mRNA level, they appear to be interrelated. Compared with the rapid and dramatic increase of the tyrosine hydroxylase mRNA level in pheochromocytoma cells, activation of the protein kinase A or protein kinase C pathway in the cultured hypothalamic cells induces slow changes of a small magnitude in the amount of tyrosine hydroxylase mRNA. The slow regulation of tyrosine hydroxylase gene expression in hypothalamic dopaminergic neurons corresponds to the relatively high stability of tyrosine hydroxylase mRNA (half-life = 14 ± 1 h) in these cells.  相似文献   

16.
Abstract: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ , is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.  相似文献   

17.
The level of polysomes in ungerminated conidia of Neurospora crassa depends on the method used to collect spores. Spores harvested and exposed to hydration contain 30% of their ribosomes as polysomes, whereas those not exposed to hydration contain only 3% of their ribosomes as polysomes. During the germination process, the percentage of the ribosomes which sediment as polysomes increases rapidly to a level of approximately 75% during the first 15 to 30 min of germination. This rapid increase has been shown to require a carbon source. During the first 30 min of germination, spores synthesize ribosomal ribonucleic acid (RNA) and heterogeneously sedimenting RNA, i.e., presumptive messenger RNA.  相似文献   

18.
We studied the effects of the anti-microtubule drug, oryzalin, on the content and spatial organization of reticuloplasmins (Ca2+-binding marker proteins of the endoplasmic reticulum) in winter wheat seedlings after their cold acclimation (3°C, 7 days) and treatment with ABA (30 M). For identification and visualization of reticuloplasmins, we applied one-dimensional SDS-PAGE with subsequent Western blotting and indirect fluorescent microscopy. We used polyclonal HSP70 and CRH antibodies against BiP and calreticulin (Cal), respectively. On immunoblots, the brightest bands corresponded to polypeptides with mol wts of 58 kD (calreticulin) and 79 kD (BiP). The content of calreticulins in roots was shown to be higher than in leaves. Cold acclimation enhanced, and ABA treatment reduced, the concentration of calreticulins in root cells. Both treatments increased the BiP concentration in roots. Oryzalin (10 M, treatment for 3 h) did not affect the level of reticuloplasmins in roots of unhardened, cold acclimated, treated with ABA and with a combination of cold and ABA plants. However, both oryzalin and low-temperature treatments resulted in the accumulation of reticuloplasmins in the two spherical structures in the vicinity of the plasmalemma and nuclear envelope. After the combined action of oryzalin and low temperature, the cortical sphere of BiP proteins was shifted into the endoplasm and calreticulins appeared in the nuclear matrix. We believe that these changes in the reticuloplasmin localization are related to the rearrangement of the endoplasmic reticulum determined by the cytoskeleton modification. They result in the improved capacity of reticuloplasmins to control Ca2+ behavior and/or to the function as chaperones. The results obtained permit the conclusion that cytoskeletal proteins interact with reticuloplasmins, and this interaction might be involved in the transduction of the external and internal signals.  相似文献   

19.
20.
Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号