首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a single injection of a sublethal dose of cycloheximide (CHI) the biosynthesis of extracellular proteins in rat hepatocytes was rapidly suppressed, the reconstitution being very slow. On the contrast, the biosynthesis of intracellular proteins (e.g., histones, and other acid-soluble liver proteins) was more resistant to CHI. The activation of biosynthesis of acid-soluble and acid-insoluble proteins was found to occur stepwise. It was assumed that the activation of synthesis and accumulation of intracellular proteins after CHI release accompanied by a decreased synthesis of extracellular proteins is one of possible causes of stimulation of DNA synthesis in the hepatocytes following a single injection of CHI.  相似文献   

2.
Tat, the transactivator protein of human immunodeficiency virus-1, has the unusual capacity of being internalized by cells when present in the extracellular milieu. This property can be exploited for the cellular delivery of heterologous proteins fused to Tat both in cell culture and in living animals. Here we provide genetic and biochemical evidence that cell membrane heparan sulfate (HS) proteoglycans act as receptors for extracellular Tat uptake. Cells genetically defective in the biosynthesis of fully sulfated HS are selectively impaired in the internalization of recombinant Tat fused to the green fluorescent protein, as evaluated by both flow cytometry and functional assays. In wild type cells, Tat uptake is competitively inhibited by soluble heparin and by treatment with glycosaminoglycan lyases specifically degrading HS chains. Cell surface HS proteoglycans also mediate physiological internalization of Tat green fluorescent protein released from neighboring producing cells. In contrast to extracellular Tat uptake, both wild type cells and cells genetically impaired in proteoglycan synthesis are equally proficient in the extracellular release of Tat, thus indicating that proteoglycans are not required for this process. The ubiquitous distribution of HS proteoglycans is consistent with the efficient intracellular delivery of heterologous proteins fused with Tat to different mammalian cell types.  相似文献   

3.
Suspension-cultured cells of sycamore (Acer pseudoplatanus L.) secrete a number of acid hydrolases and other proteins that have both highmannose and complex asparagine-linked glycans. We used affinity chromatography with concanavalin A and an antiserum specific for complex glycans in conjunction with in vivo-labeling studies to show that all of the secreted proteins carry glycans. The presence of complex glycans on secretory proteins indicates that they are passing through the Golgi complex on the way to the extracellular compartment. The sodium ionophore, monensin, did not block the transport of proteins to the extracellular medium, even though monensin efficiently inhibited the Golgi-mediated processing of complex glycans. The inhibition of N-glycosylation by tunicamycin reduced by 76% to 84% the accumulation of newly synthesized (i.e. radioactively labeled) protein that was secreted by the sycamore cells, while cytoplasmic protein biosynthesis was not affected by this antibiotic. However, in the presence of glycoprotein-processing inhibitors, such as castanospermine and deoxymannojirimycin, the formation of complex glycans was prevented but glycoprotein secretion was unchanged. These results support the conclusion that N-linked glycan processing is not necessary for sorting, but glycosylation is required for accumulation of secreted proteins in the extracellular compartment.  相似文献   

4.
5.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

6.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

7.
The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects. Interestingly, most mutants were not affected in secretion but in the release of PE_PGRS proteins from the cell surface. These mutants had insertions in a gene cluster associated with LOS biosynthesis. Lipid analysis of these mutants revealed a role at different stages of LOS biosynthesis for 10 novel genes. Furthermore, we show that regulatory protein WhiB4 is involved in LOS biosynthesis. The absence of the most extended LOS molecule, i.e. LOS-IV, and a concomitant accumulation of LOS-III was already sufficient to reduce the release of PE_PGRS proteins from the mycobacterial cell surface. A similar effect was observed for major surface protein EspE. These results show that the attachment of surface proteins is strongly influenced by the glycolipid composition of the mycobacterial cell envelope. Finally, we tested the virulence of a LOS-IV-deficient mutant in our zebrafish embryo infection model. This mutant showed a marked increase in virulence as compared with the wild-type strain, suggesting that LOS-IV plays a role in the modulation of mycobacterial virulence.  相似文献   

8.
To study the possible involvement of plant hormones in the synthesis of stress proteins in tomato upon inoculation with Cladosporium fulvum, we investigated the induction of mRNAs encoding PR proteins and ethylene biosynthesis enzymes by ethephon, 2,6-dichloroisonicotinic acid (INA) and salicylic acid (SA) by northern blot analysis. Ethephon slightly induced some but not all mRNAs encoding intra- and extracellular PR proteins. INA induced all PR protein mRNAs analysed, except for intracellular chitinase and extracellular PR-4. SA induced all PR protein mRNAs analyzed, except for intracellular chitinase and osmotin. None of the inducers affected the expression of ACC synthase mRNA, whereas all three induced ethylene-forming enzyme (EFE) mRNA.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - HR hypersensitive response - INA 2,6-dichloroisonicotinic acid - PR pathogenesis-related - SA salicylic acid - SAR systemic acquired resistance  相似文献   

9.
Coxiella burnetii, a category B biological warfare agent, causes multiple outbreaks of the zoonotic disease Q fever world-wide, each year. The virulent phase I and avirulent phase II variants of the Nine Mile RSA 493 and 439 strains of C. burnetii were propagated in embryonated hen eggs and then purified by centrifugation through Renografin gradients. Total protein fractions were isolated from each phase and subjected to analysis by one-dimensional electrophoresis plus tandem mass spectrometry. A total of 235 and 215 non-redundant proteins were unambiguously identified from the phase I and II cells, respectively. Many of these proteins had not been previously reported in proteomic studies of C. burnetii. The newly identified proteins should provide additional insight into the pathogenesis of Q fever. Several of the identified proteins are involved in the biosynthesis and metabolism of components of the extracellular matrix. Forty-four of the proteins have been annotated as having distinct roles in the pathogenesis or survival of C. burnetii within the harsh phagolysosomal environment. We propose that nine enzymes specifically involved with lipopolysaccharide biosynthesis and metabolism, and that are distinctively present in phase I cells, are virulence-associated proteins.  相似文献   

10.
The biosynthesis of membrane proteins of Pseudomonas aeruginosa was examined using various antibiotics (puromycin, streptomycin, chloramphenicol, tetracycline, and rifampin). Among six major membrane proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the biosynthesis of two membrane proteins (proteins I and II) was found to be unusually resistant to these antibiotics. The biosynthesis of protein I (apparent molecular weight of 6,500) was completely resistant to puromycin, streptomycin, chloramphenicol, and tetracycline at conditions which severely inhibited the biosynthesis of all the other membrane proteins except for protein II. Under the same conditions, the biosynthesis of protein II (apparent molecular weight of 9,000) was also resistant to puromycin, streptomycin, and tetracycline, but was sensitive to chloramphenicol. The effect of rifampin on the biosynthesis of proteins I and II indicated that their messenger RNAs are extremely stable; their functional half-lives are 16 and 8 min for proteins I and II, respectively, in contrast with 2.0 and 3.5 min for the average half-lives of the cytoplasmic and membrane proteins, respectively. Protein II was identified as the lipoprotein of the outer membrane from its amino acid composition and mobility in gel electrophoresis. Protein I is a cytoplasmic membrane protein lacking histidine. From the content of arginine residues, the number of protein I molecules per cell was estimated to be as many as, and most likely more than, that of the lipoprotein (protein II). Therefore, protein I is the most abundant protein in P. aeruginosa.  相似文献   

11.
In Streptomyces, a family of related butyrolactones and their corresponding receptor proteins serve as quorum-sensing systems that can activate morphological development and antibiotic biosynthesis. Streptomyces pristinaespiralis contains a gene cluster encoding enzymes and regulatory proteins for the biosynthesis of pristinamycin, a clinically important streptogramin antibiotic complex. One of these proteins, PapR1, belongs to a well known family of Streptomyces antibiotic regulatory proteins. Gel shift assays using crude cytoplasmic extracts detected SpbR, a developmentally regulated protein that bound to the papR1 promoter. SpbR was purified, and its gene was cloned using reverse genetics. spbR encoded a 25-kDa protein similar to Streptomyces autoregulatory proteins of the butyrolactone receptor family, including scbR from Streptomyces coelicolor. In Escherichia coli, purified SpbR and ScbR produced bound sequences immediately upstream of papR1, spbR, and scbR. SpbR DNA-binding activity was inhibited by an extracellular metabolite with chromatographic properties similar to those of the well known gamma-butyrolactone signaling compounds. DNase I protection assays mapped the SpbR-binding site in the papR1 promoter to a sequence homologous to other known butyrolactone autoregulatory elements. A nucleotide data base search showed that these binding motifs were primarily located upstream of genes encoding Streptomyces antibiotic regulatory proteins and butyrolactone receptors in various Streptomyces species. Disruption of the spbR gene in S. pristinaespiralis resulted in severe defects in growth, morphological differentiation, pristinamycin biosynthesis, and expression of a secreted superoxide dismutase.  相似文献   

12.
The biosynthesis and processing of low molecular weight protein (presumed neurosecretory protein) in cells R15, R14 and L11 of Aplysia californica was studied at high resolution by polyacrylamide slab gel electrophoresis in sodium dodecylsulfate. The number of low molecular weight proteins detected in each cell ranges from 3 in R14 and L11 to 5 to 6 in R15. In each of the cells studied, the low molecular weight protein consists of a primary precursor of ca. 12,000 daltons, and its proteolytic processing products. In each cell, the smallest protein, or in the case of R14, one of the two smallest proteins, accumulates to a significant extent, suggesting that it might correspond to a final processed neurohormone. In cell R15, the biosynthesis of the primary precursor and its subsequent processing to smaller peptides is largely unaffected by removal of extracellular calcium, by replacement of calcium with cobalt or by inhibition of spontaneous bursting via stimulation of the brachial nerve.  相似文献   

13.
Reference maps of the cytosolic, cell surface and extracellular proteome fractions of the amino acid-producing soil bacterium Corynebacterium efficiens YS-314 were established. The analysis window covers a pI range from 3 to 7 along with a molecular mass range from 10 to 130 kDa. After second-dimensional separation on SDS-PAGE and Coomassie staining, computational analysis detected 635 protein spots in the cytosolic proteome fraction, whereas 76 and 102 spots were detected in the cell surface and extracellular proteomes, respectively. By means of MALDI-TOF-MS and tryptic peptide mass fingerprinting, 164 cytosolic proteins, 49 proteins of the cell surface and 89 extracellular protein spots were identified, representing in total 177 different proteins. Additionally, reference maps of the three cellular proteome fractions of the close phylogenetic relative Corynebacterium glutamicum ATCC 13032 were generated and used for comparative proteomics. Classification according to the Clusters of Orthologous Groups of proteins scheme and abundance analysis of the identified proteins revealed species-specific differences. The high abundance of molecular chaperones and amino acid biosynthesis enzymes in C. efficiens points to environmental adaptations of this recently discovered amino acid-producing bacterium.  相似文献   

14.
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.  相似文献   

15.
The biosynthesis and processing of low molecular weight protein (presumed neurosecretory protein) in cells R15, R14 and L11 of Aplysia californica was studied at high resolution by polyacrylamide slab gel electrophoresis in sodium dodecylsulfate. The number of low molecular weight proteins detected in each cell ranges from 3 in R14 and L11 to 5 or 6 in R15. In each of the cells studied, the low molecular weight protein consists of a primary precursor of ca. 12,000 daltons, and its proteolytic processing products. In each cell, the smallest protein, or in the case of R14, one of the two smallest proteins, accumulates to a significant extent, suggesting that it might correspond to a final processed neurohormone. In cell R15, the biosynthesis of the primary precursor and its subsequent processing to smaller peptides is largely unaffected by removal of extracellular calcium, by replacement of calcium with cobalt or by inhibition of spontaneous bursting via stimulation of the brachial nerve.  相似文献   

16.
Iron and virulence in Shigella   总被引:13,自引:3,他引:10  
Iron limitation, a condition encountered within mammalian hosts, induces the synthesis of a number of proteins in pathogenic Shigella species. These include several outer membrane proteins, Shiga toxin, and proteins involved in the biosynthesis and transport of high-affinity iron-binding compounds or siderophores. Although siderophores have been shown to play a major role in the virulence of some bacterial pathogens, these compounds do not appear to be essential for the virulence of Shigella species. Unlike those pathogens which are restricted to the extracellular compartments of the host, the Shigella species invade and multiply within host cells. Alternative iron-acquisition systems, such as the ability to utilize haem-iron, permit growth of the intracellular bacteria. Virulent shigellae also possess a cell-surface haem-binding protein, and synthesis of this protein correlates with infectivity and virulence. This protein does not appear to be involved in iron acquisition. Rather, it may allow the bacteria to coat themselves with haem compounds, thus enhancing their ability to interact with target host cells.  相似文献   

17.
《The Journal of cell biology》1989,109(4):1827-1836
Immunocytochemical methods were used at the levels of light and electron microscopy to examine the intracellular compartments of chondrocytes involved in extracellular matrix biosynthesis. The results of our studies provide morphological evidence for the compartmentalization of secretory proteins in the ER. Precursors of the large chondroitin sulfate proteoglycan (CSPG), the major proteoglycan species produced by chondrocytes, were present in the Golgi complex. In addition, CSPG precursors were localized in specialized regions of the ER. Link protein, a separate gene product which functions to stabilize extracellular aggregates of CSPG monomers with hyaluronic acid, was segregated similarly. In contrast, type II procollagen, another major secretory molecule produced by chondrocytes, was found homogeneously distributed throughout the ER. The CSPG precursor-containing ER compartment exhibits a variable tubulo-vesicular morphology but is invariably recognized as an electronlucent, smooth membrane-bounded region continuous with typical ribosome-studded elements of the rough ER. The observation that this ER structure does not stain with antibodies against resident ER proteins also suggests that the compartment is a specialized region distinct from the main part of the ER. These results support recent studies that consider the ER as a compartmentalized organelle and are discussed in light of the possible implications for proteoglycan biosynthesis and processing.  相似文献   

18.
Protein folding     
The problem of protein folding is that how proteins acquire their native unique three‐dimensional structure in the physiological milieu. To solve the problem, the following key questions should be answered: do proteins fold co‐ or post‐translationally, i.e. during or after biosynthesis, what is the mechanism of protein folding, and what is the explanation for fast folding of proteins? The two first questions are discussed in the current review. The general lines are to show that the opinion, that proteins fold after they are synthesized is hardly substantiated and suitable for solving the problem of protein folding and why proteins should fold cotranslationally. A possible tentative model for the mechanism of protein folding is also suggested. To this end, a thorough analysis is made of the biosynthesis, delivery to the folding compartments, and the rates of the biosynthesis, translocation and folding of proteins. A cursory attention is assigned to the role of GroEL/ES‐like chaperonins in protein folding.  相似文献   

19.
Biofilms are microbial communities characterized by three-dimensional growth resulting from the ability of individual cells to adhere to each other as well as to produce an extracellular matrix that ensures biofilm physical cohesion. Numerous bacteria produce cellulose as a biofilm matrix polymer, a property relying on the expression of bacterial cellulose synthesis (Bcs) proteins and their post-translational activation upon binding of cyclic di-guanosine mono-phosphate second messenger (c-di-GMP) produced by diguanylate cyclases. In Escherichia coli and other Enterobacteriaceae, two genes of unknown function, yhjR and yhjQ , are located upstream of the bcs genes. Here, we show that yhjQ , but not yhjR , is essential for cellulose biosynthesis; it has therefore been renamed bcsQ. Using a green fluorescent protein (GFP) fusion approach, we demonstrate that BcsQ, a MinD homologue, displays a polar localization and that cell-to-cell adhesion is initiated through production of cellulose at the BcsQ-labelled pole. Although we did not detect a similar localization for other Bcs proteins, immunogold labelling of cellulose itself at the pole of individual bacteria indicates the localized activity of the cellulose biosynthesis apparatus. These results therefore suggest that BcsQ could participate in spatial restriction of cellulose biosynthesis activity in Enterobacteriaceae.  相似文献   

20.
Lysyl hydroxylase 3 (LH3), the multifunctional enzyme associated with collagen biosynthesis that possesses lysyl hydroxylase and collagen glycosyltransferase activities, has been characterized in the extracellular space in this study. Lysine modifications are known to occur in the endoplasmic reticulum (ER) prior to collagen triple-helix formation, but in this study we show that LH3 is also present and active in the extracellular space. Studies with in vitro cultured cells indicate that LH3, in addition to being an ER resident, is secreted from the cells and is found both in the medium and on the cell surface associated with collagens or other proteins with collagenous sequences. Furthermore, in vivo, LH3 is present in serum. LH3 protein levels correlate with the galactosylhydroxylysine glucosyltransferase (GGT) activity of mouse tissues. This, together with other data, indicates that LH3 is responsible for GGT activity in the tissues and that GGT activity assays can be used to quantify LH3 in tissues. LH3 in vivo is located in two compartments, in the ER and in the extracellular space, and the partitioning varies with tissue type. In mouse kidney the enzyme is located mainly intracellularly, whereas in mouse liver it is located solely in the extracellular space. The extracellular localization and the ability of LH3 to modify lysyl residues of extracellular proteins in their native, nondenaturated conformation reveals a new dynamic in extracellular matrix remodeling, suggesting a novel mechanism for adjusting the amount of hydroxylysine and hydroxylysine-linked carbohydrates in collagenous proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号