首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Temporal correlation of neuronal activity has been suggested as a criterion for multiple object recognition. In this work, a two-dimensional network of simplified Wilson-Cowan oscillators is used to manage the binding and segmentation problem of a visual scene according to the connectedness Gestalt criterion. Binding is achieved via original coupling terms that link excitatory units to both excitatory and inhibitory units of adjacent neurons. These local coupling terms are time independent, i.e., they do not require Hebbian learning during the simulations. Segmentation is realized by a two-layer processing of the visual image. The first layer extracts all object contours from the image by means of “retinal cells” with an “on-center” receptive field. Information on contour is used to selectively inhibit Wilson-Cowan oscillators in the second layer, thus realizing a strong separation among neurons in different objects. Accidental synchronism between oscillations in different objects is prevented with the use of a global inhibitor, i.e., a global neuron that computes the overall activity in the Wilson-Cowan network and sends back an inhibitory signal. Simulations performed in a 50×50 neural grid with 21 different visual scenes (containing up to eight objects + background) with random initial conditions demonstrate that the network can correctly segment objects in almost 100% of cases using a single set of parameters, i.e., without the need to adjust parameters from one visual scene to the next. The network is robust with reference to dynamical noise superimposed on oscillatory neurons. Moreover, the network can segment both black objects on white background and vice versa and is able to deal with the problem of “fragmentation.” The main limitation of the network is its sensitivity to static noise superimposed on the objects. Overcoming this problem requires implementation of more robust mechanisms for contour enhancement in the first layer in agreement with mechanisms actually realized in the visual cortex. Received: 25 October 2001 / Accepted: 26 February 2003 / Published online: 20 May 2003 Correspondence to: Mauro Ursino (e-mail: mursino@deis.unibo.it, Tel.: +39-051-2093008, Fax: +39-051-2093073)  相似文献   

2.
Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives.  相似文献   

3.
The principle clock of mammals, named suprachiasmatic nucleus (SCN), coordinates the circadian rhythms of behavioral and physiological activity to the external 24 h light-dark cycle. In the absence of the daily cycle, the SCN acts as an endogenous clock that regulates the ~24h rhythm of activity. Experimental and theoretical studies usually take the light-dark cycle as a main external influence, and often ignore light pollution as an external influence. However, in modern society, the light pollution such as induced by electrical lighting influences the circadian clock. In the present study, we examined the effect of external noise (light pollution) on the collective behavior of coupled circadian oscillators under constant darkness using a Goodwin model. We found that the external noise plays distinct roles in the network behavior of neurons for weak or strong coupling between the neurons. In the case of strong coupling, the noise reduces the synchronization and the period of the SCN network. Interestingly, in the case of weak coupling, the noise induces a circadian rhythm in the SCN network which is absent in noise-free condition. In addition, the noise increases the synchronization and decreases the period of the SCN network. Our findings may shed new light on the impact of the external noise on the collective behavior of SCN neurons.  相似文献   

4.
Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.  相似文献   

5.
How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity.  相似文献   

6.
Neuron transmits spikes to postsynaptic neurons through synapses. Experimental observations indicated that the communication between neurons is unreliable. However most modelling and computational studies considered deterministic synaptic interaction model. In this paper, we investigate the population rate coding in an all-to-all coupled recurrent neuronal network consisting of both excitatory and inhibitory neurons connected with unreliable synapses. We use a stochastic on-off process to model the unreliable synaptic transmission. We find that synapses with suitable successful transmission probability can enhance the encoding performance in the case of weak noise; while in the case of strong noise, the synaptic interactions reduce the encoding performance. We also show that several important synaptic parameters, such as the excitatory synaptic strength, the relative strength of inhibitory and excitatory synapses, as well as the synaptic time constant, have significant effects on the performance of the population rate coding. Further simulations indicate that the encoding dynamics of our considered network cannot be simply determined by the average amount of received neurotransmitter for each neuron in a time instant. Moreover, we compare our results with those obtained in the corresponding random neuronal networks. Our numerical results demonstrate that the network randomness has the similar qualitative effect as the synaptic unreliability but not completely equivalent in quantity.  相似文献   

7.
Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp.  相似文献   

8.
Hindmarsh-Rose 神经网络的混沌同步   总被引:1,自引:0,他引:1  
研究了通过特殊构造的非线性函数耦合连接的神经网络的混沌同步问题。在发展基于稳定性准则的混沌同步方法的基础上,给出了计算同步稳定性的误差发展方程,当耦合强度取参考值时,可实现稳定的混沌同步而不需要计算最大条件Lyapunov指数去判定是否稳定。通过对按照完全连接形式构成的Hindmarsh-Rose神经网络的数值模拟,显示可仅从两个耦合神经的耦合强度的稳定性范围预期到许多耦合神经实现同步的稳定性范围。该方法在噪声影响下,对实现神经元的混沌同步仍具有较强的鲁棒性。此外发现随着耦合神经数的增加,满足同步稳定性的耦合强度减小,与耦合神经的数量成反比。  相似文献   

9.
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.  相似文献   

10.
Factors contributing to the production of a phase lag along chains of oscillatory networks consisting of Hodgkin-Huxley type neurons are analyzed by means of simulations. Simplified network configurations are explored consisting of the basic building blocks of the spinal central pattern generator (CPG) generating swimming in the lamprey. It consists of reciprocally coupled crossed inhibitory C interneurons and ipsilateral excitatory E interneurons that activate C neurons and other E neurons. Oscillatory activity in the model network can, in the simplest case, be produced by a pair of reciprocally coupled C interneurons oscillating through an escape mechanism. Different levels of tonic excitation drive the network over a wide burst frequency range. In this type of network, powerful frequency-regulating factors are the effective inhibition produced by the active side, in combination with the tendency of the inactive side to escape from the inhibition. These two mechanisms can be affected by several factors, e.g. spike frequency adaptation (calcium-dependent K(+) channels), N-methyl-D-aspartate membrane properties as well as presence of low-voltage activated calcium channels. A rostrocaudal phase lag can be produced either by extending the contralateral inhibitory projections or the ipsilateral excitatory projections relatively more in the caudal than the rostral direction, since both an increased inhibition and a phasic excitation slow down the receiving network. The phase lag becomes decreased if the length of the intersegmental projections is increased or if the projections are extended symmetrically in both the rostral and the caudal directions. The simulations indicate that the conditions in the ends of an oscillator chain may significantly affect sign, magnitude and constancy of the phase lag. Also, with short and relatively weak intersegmental connections, the network remains robust against perturbations as well as intrinsic frequency differences along the chain. The phase lag (percentage of cycle duration) increases, however, with burst frequency also when the coupling strength is comparatively weak. The results are discussed and compared with previous "phase pulling" models as well as relaxation oscillators.  相似文献   

11.
Wen-Bin Lee 《FEBS letters》2009,583(5):927-932
Yeast cell cycle Boolean network was used as a case study of robustness to protein noise. Robustness was interpreted as involving stability of G1 steady state and sequence of gene expression from cell cycle START to stationary G1. A robustness measure to evaluate robustness strength of a network was proposed. Robust putative networks corresponding to the same steady state and sequence of gene expression of wild-type network were sampled. Architecture of wild-type yeast cell cycle network can be revealed by average topology profile of sampled robust putative networks.  相似文献   

12.
The distribution of inhibitory and excitatory synapses on neocortical neurons is at odds with a simple view that cortical functioning can persist by maintaining a balance between inhibitory and excitatory drives. Pyramidal cells can potentially be shut down by very powerful proximal inhibitory synapses, despite these accounting for perhaps less than 1% of their total number of synaptic inputs. Interneurons in contrast are dominated by excitatory inputs. These may be powerful enough to effect an apparent depolarizing block at the soma. In this extreme case though, models suggest that action potentials are generated down the axon, and the cells behave like integrate-and-fire neurons. We discuss possible network implications of these modelling studies.  相似文献   

13.
We describe a novel dynamic mechanism for episodic or compound bursting oscillations, in which bursts of electrical impulses are clustered together into episodes, separated by long silent phases. We demonstrate the mechanism for episodic bursting using a minimal mathematical model for “phantom bursting.” Depending on the location in parameter space, this model can produce fast, medium, or slow bursting, or in the present case, fast, slow, and episodic bursting. The episodic bursting is modestly robust to noise and to parameter variation, and the effect that noise has on the episodic bursting pattern is quite different from that of an alternate episodic burst mechanism in which the slow envelope is produced by metabolic oscillations. This mechanism could account for episodic bursting produced in endocrine cells or neurons, such as pancreatic islets or gonadotropin releasing neurons of the hypothalamus.  相似文献   

14.
We investigate the detectability of weak electric field in a noisy neural network based on Izhikevich neuron model systematically. The neural network is composed of excitatory and inhibitory neurons with similar ratio as that in the mammalian neocortex, and the axonal conduction delays between neurons are also considered. It is found that the noise intensity can modulate the detectability of weak electric field. Stochastic resonance (SR) phenomenon induced by white noise is observed when the weak electric field is added to the network. It is interesting that SR almost disappeared when the connections between neurons are cancelled, suggesting the amplification effects of the neural coupling on the synchronization of neuronal spiking. Furthermore, the network parameters, such as the connection probability, the synaptic coupling strength, the scale of neuron population and the neuron heterogeneity, can also affect the detectability of the weak electric field. Finally, the model sensitivity is studied in detail, and results show that the neural network model has an optimal region for the detectability of weak electric field signal.  相似文献   

15.
We studied the detailed structure of a neuronal network model in which the spontaneous spike activity is correctly optimized to match the experimental data and discuss the reliability of the optimized spike transmission. Two stochastic properties of the spontaneous activity were calculated: the spike-count rate and synchrony size. The synchrony size, expected to be an important factor for optimization of spike transmission in the network, represents a percentage of observed coactive neurons within a time bin, whose probability approximately follows a power-law. We systematically investigated how these stochastic properties could matched to those calculated from the experimental data in terms of the log-normally distributed synaptic weights between excitatory and inhibitory neurons and synaptic background activity induced by the input current noise in the network model. To ensure reliably optimized spike transmission, the synchrony size as well as spike-count rate were simultaneously optimized. This required changeably balanced log-normal distributions of synaptic weights between excitatory and inhibitory neurons and appropriately amplified synaptic background activity. Our results suggested that the inhibitory neurons with a hub-like structure driven by intensive feedback from excitatory neurons were a key factor in the simultaneous optimization of the spike-count rate and synchrony size, regardless of different spiking types between excitatory and inhibitory neurons.  相似文献   

16.
The background activity of a cortical neural network is modeled by a homogeneous integrate-and-fire network with unreliable inhibitory synapses. For the case of fast synapses, numerical and analytical calculations show that the network relaxes into a stationary state of high attention. The majority of the neurons has a membrane potential just below the threshold; as a consequence the network can react immediately – on the time scale of synaptic transmission- on external pulses. The neurons fire with a low rate and with a broad distribution of interspike intervals. Firing events of the total network are correlated over short time periods. The firing rate increases linearly with external stimuli. In the limit of infinitely large networks, the synaptic noise decreases to zero. Nevertheless, the distribution of interspike intervals remains broad. Action Editor: Misha Tsodyks  相似文献   

17.
Interneurons of motor area in the brain cortex have been studied in cats and monkeys. The greatest attention has been paid to pyramidal interneurons, among which six cell types have been described according to their axonal composition. Unlike stellate interneurons, all types of pyramidal interneurons possess less developed axonal collaterals. Interneuronal contacts are situated on dendrites or cell bodies of middle and large long-axonal pyramids. Functional role of cortical interneurons seems to be different. Some of them are of inhibitory nature (basket cells and, perhaps, other types of long-axonal stellate neurons), others are exciting elements. The latter include short-axonal stellate neurons and, perhaps, pyramidal interneurons. While comparing the cortex in cats and monkeys, it is evident that the neocortex in monkeys, especially its lower layers, is rich in pyramidal interneurons.  相似文献   

18.
Stellate cells in the cat antero-ventral cochlear nucleus (AVCN) maintain a robust rate-place representation of vowel spectra over a wide range of stimulus levels. This rate-place representation resembles that of low threshold, high spontaneous rate (SR) auditory nerve fibers (ANFs)at low stimulus levels, and that of high threshold, lowmedium SR ANFsat high stimulus levels. One hypothesis accounting for this phenomenon is that AVCN stellate cells selectively process inputs from different SR population of ANFs in a level-dependent fashion. In this paper, we investigate a neural mechanism that can support selective processing of ANF inputs by stellate cells. We study a physiologically detailed compartmental model of stellate cells. The model reproduces PST histograms and rate-versus-level functions measured in real cells. These results indicate that simple and plausible distribution patterns of excitatory and inhibitory inputs within the stellate cell dendritic tree can support level dependent selective processing. Factors affecting selective processing are identified. This study thus represents a first step towards the development of a computational model of the AVCN stellate cell receptive field.  相似文献   

19.
The present study was designed to examine the nerve growth factor (NGF) system (ligand and receptor-expressing neurons) in the somatosensory (areas 1, 3a, and 3b) and motor (area 4) cortices of the mature macaque. Light and electron microscope immunohistochemistry was used to assess the distribution and identity of NGF-, p75-, and trk-expressing elements. In each cortical area examined, NGF-positive neuronal somata were distributed through all laminae; most immunolabeled neurons were in layers II, III, and V. Based upon light microscope criteria (e.g., the morphology of proximal dendrites), both pyramidal and stellate neurons expressed NGF. Of the identifiable NGF- immunoreactive cells, 92% were pyramidal neurons and the remainder was stellate neurons. The electron microscope study showed that most (88%) NGF-positive somata formed symmetric synapses, whereas the others formed both symmetric and asymmetric synapses. As the somata of pyramidal neurons form only symmetric synapses and those of inhibitory stellate neurons form both symmetric and asymmetric somatic synapses, the ultrastructural data support the light microscopic analyses. In contrast, neurotrophin receptors, p75 and trk, were expressed chiefly by the cell bodies of layer V pyramidal neurons and the supragranular neuropil. At the ultrastructural level, receptor-positive profiles were post-synaptic elements (e.g., dendritic shafts and spines) and the concentration of immunoreactivity was greatest in the vicinity of post-synaptic densities. Thus, NGF regulatory systems parallel excitatory and inhibitory neurotransmitter systems. Cortex contains the morphological framework by which pyramidal and/or inhibitory stellate neurons can affect the activity of post-synaptic pyramidal neurons via anterograde and autocrine/paracrine NGF systems.  相似文献   

20.
Performance of a model for a local neuron population   总被引:2,自引:0,他引:2  
A model of a local neuron population is considered that contains three subsets of neurons, one main excitatory subset, an auxiliary excitatory subset and an inhibitory subset. They are connected in one positive and one negative feedback loop, each containing linear dynamic and nonlinear static elements. The network also allows for a positive linear feedback loop. The behaviour of this network is studied for sinusoidal and white noise inputs. First steady state conditions are investigated and with this as starting point the linearized network is defined and conditions for stability is discovered. With white noise as input the stable network produces rhythmic activity whose spectral properties are investigated for various input levels. With a mean input of a certain level the network becomes unstable and the characteristics of these limit cycles are investigated in terms of occurence and amplitude. An electronic model has been built to study more closely the waveforms under both stable and unstable conditions. It is shown to produce signals that resemble EEG background activity and certain types of paroxysmal activity, in particular spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号