首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate of potassium exchange of the human erythrocyte   总被引:4,自引:0,他引:4  
1. The exchange of potassium by the human erythrocyte has been studied in vitro using radioactive potassium. 2. An incubation technique which maintains erythrocytes in an essentially normal state for over 48 hours was employed. 3. Exchange of radioactive potassium between the red cells and the extracellular fluid was regular and progressive, the specific activities of the intra- and extracellular fluids reaching equal values. This indicates that all the erythrocyte potassium is exchangeable and is exchanging at the same rate. 4. From these data, it was calculated that at 37 degrees C., 1.6 per cent of the erythrocyte potassium exchanges per hour, corresponding to an exchange of 1.5 mM of potassium per liter of red cells per hour. The time required for the exchange of 50 per cent of the red cell potassium is calculated to be 43 hours. 5. The temperature coefficient (Q(10)) of the potassium exchange rate is 2.2. This is the same as the temperature coefficient of the rate of utilization of glucose by the human erythrocyte. 6. Varying the percentage of red cells, plasma potassium concentration, initial glucose level, and pH between 7.0 and 7.7 had no effect on the potassium exchange rate.  相似文献   

2.
The exchange of potassium between cells and plasma of heparinized human blood has been studied in vitro using the radioactive isotope K42. The changes in cell and plasma specific activity are characteristic of a simple two-compartment system. The mean of seven determinations of the exchange rate at 38°C. is 1.8 per cent of the cellular potassium per hour. The results indicate that at 38°C. the rate is relatively insensitive to oxygenation or reduction of the hemoglobin, and to 1200 r of gamma radiation. With varying temperature the rate follows pseudo first order kinetics with a Q10 of 2.35. Below 15°C. the rate of loss of potassium exceeds the rate of uptake.  相似文献   

3.
Freshly drawn heparinized human whole blood is exposed to x-rays in amounts up to 54,000 r in vitro and then equilibrated under a controlled atmosphere at 24 or 38°C. For as long as 26 hours following exposure, potassium is progressively lost from the cells and quantitatively replaced by sodium with little, if any, osmotic disturbance. The mean rate of loss at 20,000 r and 24°C. is about 0.4 per cent of the initial cell potassium per hour and approximately doubles for a 20,000 r increase. It is accentuated if blood is stored at low temperature (5°C.) following radiation exposure. Isotope experiments show that the rate of entrance of potassium into the cells is practically unaltered, the principal effect being an acceleration of the rate from cells to plasma. This suggests that radiation may have interfered with a mechanism of selective potassium accumulation based on preferential retention of the element. The sodium which enters the cells following irradiation contributes to the rapidly exchanging portion of the cellular sodium, suggesting that this fraction is ionic sodium.  相似文献   

4.
Human leucocytes incubated in tissue culture fluid of low-sodium concentration (2 mM; iso-osmolarity maintained with choline chloride) reached a new equlibrium within 1 hour and lost approximately 25% of intracellular potassium and 70% of intracellular sodium. The rate constant for ouabainsensitive sodium efflux fell by more than 50% and the ouabain-insensitive rate constant increased nearly threefold in the low-sodium medium. Total sodium efflux fell in proportion to internal sodium whereas ouabain-insensitive sodium efflux remained unchanged. A reduction in external sodium from 140 to 2 mM was associated with a 75% fall in sodium influx. In the low-sodium medium ouabainsensitive potassium influx exceeded ouabain-sensitive sodium efflux and no ouabain-sensitive potassium efflux could be demonstrated. Ouabain-insensitive potassium influx and that portion of potassium efflux which is dependent on external potassium fell in parallel in low-sodium cells, suggesting reduced activity of a ouabain-insensitive K:K exchange system.  相似文献   

5.
The kinetics of calcium, potassium, and sodium exchange by Xenopus laevis oocytes were monitored with radioactive tracers both before and during progesterone-induced maturation. The rate of 45Ca release steadily elevates for several hours during maturation, beginning within 40 min after progesterone exposure. About an hour later, the rate of 45Ca uptake also increases. The rate of 45Ca release begins to decline 1–2 hr before germinal vesicle breakdown (GVBD); the rate of calcium uptake declines only after GVBD. Similar changes are seen after maturation is induced with other steroids, but not when maturation is blocked by inhibitors. The passive potassium flux initially increases after progesterone treatment to be followed later by a decrease. These observed changes occur coincidently with those of 45Ca efflux. The passive sodium flux, on the other hand, steadily increases from the time of progesterone treatment until GVBD.  相似文献   

6.
Resealed human red cell ghosts containing caged ATP (Kaplan et al., 1978) and [3H]ADP were irradiated at 340 nm. The photochemical release of free ATP initiated a rapid transphosphorylation reaction (ATP:ADP exchange), a component of which is inhibited by ouabain. The reaction rate was measured by following the rate of appearance of [3H]ATP. The sodium pump-mediated ATP:ADP exchange reaction showed high-affinity stimulation by Mg ions (less than 10 microM) and was inhibited at higher levels. At optimal [Mg], extracellular Na (Nao) had a biphasic effect. Nao progressively inhibited the reaction rate between 0 and 10 mM and stimulated at higher levels. Intracellular Na (Nai) activated the reaction; the rate was maximal when Nai was 1 mM and remained unaltered up to 115 mM Nai at constant Nao. Extracellular K ions (Ko) inhibited the reaction; at high Nao, half-maximal inhibition was observed with 0.9 mM Ko. Lio inhibited the exchange rate with a lower affinity than Ko; half-maximal inhibition was produced by approximately 50 mM Lio. Intracellular K ions were without dramatic effect on the reaction rate in the concentration range where Ko inhibited completely. The relationship between these observations and previous studies on porous preparations is discussed, as well as the extent to which these observations support the hypothesis that the sodium pump-mediated ATP:ADP exchange reaction accompanies the Na:Na exchange transport mode of the sodium pump.  相似文献   

7.
Sodium and potassium intakes were increased in normotensive volunteers to assess the effects on their blood pressures. An approximately threefold increase in sodium intake for eight days had no effect on the blood pressures of seven volunteers, while a two-stage increase in potassium intake, by about 40% for eight days and a further 55% for 14 days, had no effect on the blood pressures of 21 volunteers. Renal electrolyte excretions and the blood pressures of all 28 subjects showed no statistically significant correlations between either sodium or potassium excretion and blood pressure. A weak negative correlation was found between the sodium: potassium ratio and systolic pressure. The small reductions in sodium intake and increases in potassium intake that might be achieved through propaganda and changes in food processing are unlikely to lower mean blood pressure in Western societies.  相似文献   

8.
1. Methods for the use of the marine green alga, Ulva lactuca, in studies on electrolyte metabolism are described. 2. The effect of illumination and iodoacetate on the potassium and sodium content, as well as the influence of light and running sea water on the iodoacetate effect was investigated. The rate of exchange of cellular potassium ion for K(42) under conditions of light and dark at 20 and 30 degrees C. was studied. 3. Ulva maintained in the dark for long periods loses some potassium and gains sodium, both effects being reversed upon illumination. The presence of 0.001 M iodoacetate in the dark causes a marked progressive loss of potassium and gain of sodium, phenomena which do not occur when the alga is illuminated. Evidence for the penetration of the inhibitor into the cell in the presence of light is presented. The iodoacetate effect on potassium and sodium content, once established, can be "washed out" of the alga when the plant is placed in light and running sea water without the inhibitor. Illumination and increased temperature each favor a more rapid exchange of tissue for environmental potassium ion. 4. In the interpretation of these findings it is emphasized that metabolic work, perhaps in the form of ion transports, must be done by the cell to compensate for the continual flow of potassium ion and sodium ion with their respective concentration gradients and thus maintain homeostasis within the cell. Evidence is presented which indicates separate mechanisms for the distribution of sodium and potassium in this organism. It is further suggested that the degradation of phosphoglyceric acid, an important glycolytic and photosynthetic intermediate, or one of the products of its metabolism supplied the energy for these ion transports(s). The role of permeability per se is considered.  相似文献   

9.
Net uptake of potassium by low K, high Na cells of Neurospora at pH 5.8 is accompanied by net extrusion of sodium and hydrogen ions. The amount of potassium taken up by the cells is matched by the sum of sodium and hydrogen ions lost, under a variety of conditions: prolonged preincubation, partial respiratory inhibition (DNP), and lowered [K]o. All three fluxes are exponential with time and obey Michaelis kinetics as functions of [K]o. The V max for net potassium uptake, 22.7 mmoles/kg cell water/min, is very close to that for K/K exchange reported previously (20 mmoles/kg cell water/min). However, the apparent Km for net potassium uptake, 11.8 mM [K]o, is an order of magnitude larger than the value (1 mM) for K/K exchange. It is suggested that a single transport system handles both net K uptake and K/K exchange, but that the affinity of the external site for potassium is influenced by the species of ion being extruded.  相似文献   

10.
The organic mercurial p-chloromercuribenzensulfonic acid (PCMBS) reversibly increases fluxes of sodium and potassium across the human red blood cell membrane. We examined the effect of different monovalent anions on cation fluxes stimulated by PCMBS. A substantial portion of the fluxes of both cations was found to have a specific anion requirement for chloride or bromide, and was not observed when chloride was replaced by nitrate, acetate or methylsulfate. The chloride-dependent component of the cation fluxes was only observed when the cells were exposed to PCMBS concentrations of 0.5 mM or greater. Furosemide (1 mM) did not inhibit the PCMBS-stimulated cation fluxes. The observed anion specificity is directly associated with the transport process rather than PCMBS binding to the membrane. A portion of the potassium transport stimulated by PCMBS appears to involve K+-K+ exchange; however, Na+ + K+ cotransport is not stimulated by this sulfhydryl reagent.  相似文献   

11.
(1) The influence of vanadate (Na3VO4) on sodium and potassium uptake as well as on cellular ion contents of sodium and potassium has been studied in heart muscle and non-muscle cells obtained from various species. An ouabain-like inhibition of potassium uptake (up to 50%), combined with a decrease of cellular potassium (up to 20%) has been observed by vanadate (10(-4)-10(-3) M) in heart non-muscle cells obtained from neonatal guinea pigs and chick embryos. In heart muscle and non-muscle cells prepared from neonatal rats, as well as in Girardi human heart cells, a vanadate-induced stimulation of potassium uptake (up to 100%), combined with a rise in cellular potassium (up to 20%) and without significant alteration of cellular sodium, has been found. A slight increase of 22Na+ influx can be measured in rat heart muscle cells and in Girardi human heart cells in the presence of vanadate (10(-4)--10(-3) M). (2) In beating rat heart muscle cells in culture, detrimental effects of serum deprivation--concerning beating properties, potassium uptake and cellular potassium--can at least in part be overcome by addition of vanadate. Furthermore, this compound prevents ouabain-induced signs of toxicity (contractures) in these cells. (3) The stimulatory effects of vanadate on potassium can be mimicked by insulin (1-10 mU/ml). Furthermore, vanadate produces an insulin-like stimulation of 2-deoxy-D-glucose uptake in rat heart muscle and non-muscle cells as well as in Girardi human heart cells. (4) The experimental data demonstrate an ouabain-like inhibition as well as an insulin-mimetic stimulation of potassium-uptake in various heart cells. The reason for this antagonistic mode of action may be due to the different capabilities of the heart cell types to reduce vanadium in the V-valence state of vanadium in the IV-valence state, thereby favouring either ouabain-like inhibition (vanadium V) or insulin-mimetic stimulation (vanadium IV) of potassium transport.  相似文献   

12.
Intracellular potassium, sodium and potassium influx were examined in PHA-activated human lymphocytes within 6 days of cultivation. DNA flow cytometry was used to estimate the percentage of cells in G1, S and G2 + M phases. Potassium influx and content per g protein were found to be increased, whereas sodium content decreased with the progression of cells from G1 to S phases, being maximum on the 3rd day. Later on the percentage of cells in S phase was seen diminished, and the potassium content decreased just as sodium content increased. It is concluded that ionic changes may correlate with the entering of cells into S phase.  相似文献   

13.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   

14.
The intracellular sodium and potassium concentrations and membrane transport properties for these ions were investigated in red blood cells from newborn puppies and adult dogs. At birth the intracellular concentrations of sodium and potassium are much higher than those found in adult dog red cells. During the first few weeks of life the intracellular concentrations of these ions gradually decrease until the adult level is reached. Changes in the membrane transport properties develop concurrently. The rate of active potassium influx, as measured by ouabain-sensitivity, and the pump to leak ratio are greater in red cells from newborn puppies than in those from adult animals. No ouabain-sensitive sodium efflux could be demonstrated in red cells from older puppies or adult dogs. When either puppy or adult dog red cells are depleted of ATP (by incubation at 37°C with no substrate), potassium permeability increases, and the permeability of the membrane to sodium decreases. The addition of adenosine reverses the effect of depletion.  相似文献   

15.
Summary Recent results from this laboratory have indicated the existence of two potassium compartments in the isolated toad bladder. Only one of these, containing less than 10% of total intracellular potassium, appears to be related to the sodium transport system, since potassium influx at the serosal border of this compartment is coupled to the sodium efflux which occurs there. Ouabain, which specifically inhibits serosal sodium exit, has no effect on potassium fluxes and compartment sizes in bladders mounted in normal (2.5mm K) Ringer's solution. However, in the presence of this inhibitor, removal of serosal potassium results in a significant decrease in the rate coefficient for potassium efflux into the serosal medium, while an increase in serosal potassium results in a significant rise in this parameter, which appears to saturate at approximately 5mm K. This sensitivity to serosal potassium is seen neither in the absence of ouabain nor when the sodium pump is inactivated by removal of sodium from the mucosal medium. Furosemide, which also inhibits the sodium transport system, both inhibits potassium transport parameters in normal Ringer's and abolishes the potassium-sensitive potassium efflux seen in the presence of ouabain. Thus, the Na–K pump appears to operate as a K–K exchanger when the sodium system is inhibited by ouabain; this K–K exchange mechanism is inhibited by furosemide. One explanation for these results is that ouabain effects an alteration in the affinities of the transport system for sodium and potassium.  相似文献   

16.
Effects of insulin on plasma concentration and renal excretion of sodium and potassium were compared in conscious dogs 1) maintained in water and electrolytes balance (Series 1, 10 dogs), 2) depleted of electrolytes by repeated i.v. loading with 20% mannitol (Series 2, 10 dogs), and 3) aldosterone treated (0.8 micrograms.kg-1.h-1 i.v., Series 3, 10 dogs). In each Series intravenous infusion of insulin at a rate of 0.05 U.kg-1.h-1 elicited transient increase in plasma sodium concentration and prolonged hypokalemia. Repeated loading with mannitol in Series 2 elicited significant elevation of plasma sodium, ADH and aldosterone concentrations, as well as decrease in extracellular fluid volume. Infusion of insulin in this Series elicited smaller decrease in plasma potassium concentration and longer lasting hypernatremia than in dogs in water-electrolytes balance. Aldosterone infusion in Series 3 did not change hypokalemic effect of insulin but attenuated hypernatremia. Infusion of insulin in Series 1 elicited increase of sodium excretion and decrease in potassium excretion. These effects were absent in Series 2 and 3. The results indicate that depletion of electrolytes and blood aldosterone elevation modify the effects of insulin on plasma concentration and renal excretion of sodium and potassium.  相似文献   

17.
When rabbit reticulocytes were incubated in normal blood plasma containing mevalonic acid-2-(14)C, radioactivity was incorporated into cholesterol, cholesteryl esters, and squalene in the cells. The squalene reached a steady level of radioactivity much more rapidly than did cholesterol. Rabbit reticulocytes which were labeled as a result of previous incubation with mevalonic acid-2-(14)C were incubated with normal autologous blood plasma. The specific activity of the cholesterol in the plasma rapidly became higher than that of the cells. This suggests that there is compartmentation of cholesterol in the reticulocyte and that a pool involved in exchange with plasma cholesterol has a specific activity which is much higher than the average for the whole cell.  相似文献   

18.
OBJECTIVE--To assess the association between sodium and potassium intake and the rise in blood pressure in childhood. DESIGN--Longitudinal study of a cohort of children with annual measurements during an average follow up period of seven years. SETTING--Epidemiological survey of the population of a suburban town in western Netherlands. SUBJECTS--Cohort of 233 children aged 5-17 drawn at random from participants in the population survey. MAIN OUTCOME MEASURES--At least six annual timed overnight urine samples were obtained. The mean 24 hour sodium and potassium excretion during the follow up period was estimated for each participant and the sodium to potassium ratio calculated. Individual slopes of blood pressure over time were calculated by linear regression analysis. RESULTS--No significant association was observed between sodium excretion and the change in blood pressure over time. The mean systolic blood pressure slopes, however, were lower when potassium intake was higher (coefficient of linear regression -0.045 mm Hg/year/mmol; 95% confidence interval -0.069 to -0.020), and the change in systolic pressure was greater when the urinary sodium to potassium ratio was higher (0.356 mm Hg/year/unit; 95% confidence interval 0.069 to 0.642). In relation to potassium this was interpreted as a rise in blood pressure that was on average 1.0 mm Hg (95% confidence interval -1.65 to -0.35) lower in children in the upper part of the distribution of intake compared with those in the lower part. The mean yearly rise in systolic blood pressure for the group as a whole was 1.95 mm Hg. Urinary electrolyte excretion was not associated with diastolic blood pressure. CONCLUSION--Dietary potassium and the dietary sodium to potassium ratio are related to the rise in blood pressure in childhood and may be important in the early pathogenesis of primary hypertension.  相似文献   

19.
Summary

In order to get a better understanding in the mechanism by which tryptophan-N-formylated gramicidin (NFG) and gramicidin kill the malaria parasite Plasmodium falciparum in vitro, we studied the capacity of these peptides to change the potassium, as well as the sodium, composition of normal human erythrocytes, and their ability to cause cell lysis. It is shown that both peptides are able to induce potassium leakage from, and sodium flux into, erythrocytes in such a manner that it is most likely that they are able to form cation channels in the membrane of these cells. For both peptides, potassium efflux proceeds at a faster rate than sodium influx, but this difference is greater for NFG than for gramicidin. This explains the observation that gramicidin is more lytic than NFG is, even when comparing concentrations that show the same antimalarial activity. The finding that gramicidin is approximately 10 times more active than NFG in causing potassium efflux from normal erythrocytes, as well as in killing the malaria parasite, supports the hypothesis that peptideinduced parasite death is related to their capacity to induce potassium leakage from infected erythrocytes. Finally, the observation that erythrocytes are able to restore their normal ion contents after losing more than 50% of their potassium content by incubation with NFG or gramicidin, suggests that, in vivo, and upon treatment with drug concentrations that cause full inhibition of parasite growth, these cells would not be irreversibly damaged by action of the drugs.  相似文献   

20.
1. The methods employed in these and preceding (25-27) studies were shown to allow analysis of true cellular sodium and potassium concentrations. 2. The rate of reaccumulation of potassium by potassium-deficient cells is independent of the presence or absence of sodium in the external medium. 3. Phenylurethane (10(-3)M), a photosynthetic and metabolic inhibitor, causes a marked progressive loss of potassium and gain of sodium, both of which changes are completely reversible on transferring the samples to running sea water. 4. Iodoacetate, while not effective in causing potassium and sodium shifts in the light, effects a loss of potassium and a gain of sodium in the light in the presence of phenylurethane. 5. Arsenate (5 x 10(-3)M) completely protects Ulva against the potassium loss usually observed with iodoacetate in the dark while it affords no protection against the sodium influx under the same conditions. Arsenate given after 18 to 20 hours in iodoacetate gives significant protection against potassium loss in the dark, and allows a slight net reaccumulation of potassium in the light. Arsenate in the dark after iodoacetate affords no protection against the sodium uptake caused by iodoacetate in the dark, while in the light under the same conditions sodium is rapidly secreted to the control level within a few hours. This resecretion of sodium is thought to be primarily an effect of light, the presence of arsenate being incidental. 6. The "decoupling agent" 4,6-dinitro-o-cresol causes a marked progressive increase in cellular sodium and a drop in cellular potassium, though the kinetics of these two movements are distinctly different from each other. 7. Pyruvate (50 mg. per cent) given with iodoacetate (2 x 10(-3)M) for 5 hours in the dark completely prevents the sodium increase caused by iodoacetate, while affording less protection against the potassium loss. Phosphoglycerate, on the other hand, offers more protection against potassium loss, and essentially none against the sodium gain. 8. ATP added in small amounts at short intervals to samples maintained in 10(-3)M iodoacetate in the dark affords significant protection against the potassium loss observed in iodoacetate. Cellular sodium is somewhat higher in the ATP-iodoacetate samples than in the iodoacetate samples. 9. In the discussion of the data presented two major points are emphasized: (1) the close correlation between cellular metabolism and normal cation control; (2) two mechanisms must be operative in cation regulation in this organism: one for moving potassium inwards and the other for transporting sodium outwards. These mechanisms are independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号